Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Zafar, Fiza | es_ES |
dc.date.accessioned | 2021-01-19T04:32:26Z | |
dc.date.available | 2021-01-19T04:32:26Z | |
dc.date.issued | 2019-11-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159354 | |
dc.description.abstract | [EN] A parametric family of fourth-order schemes for computing the inverse and the Moore-Penrose inverse of a complex matrix is designed. A particular value of the parameter allows us to obtain a fifth-order method. Convergence analysis of the different methods is studied. Every iteration of the proposed schemes involves four matrix multiplications. A numerical comparison with other known methods, in terms of the average number of matrix multiplications and the mean of CPU time, is presented. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Ciencia, Innovación y Universidades PGC2018-095896-B-C22, Generalitat Valenciana PROMETEO/2016/089, and Schlumberger Foundation-Faculty for Future Program. On the other hand, the authors would like to thank the anonymous referees for their comments and suggestions that have improved the final version of this manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Moore-Penrose inverse | es_ES |
dc.subject | Schulz-type method | es_ES |
dc.subject | Singular value decomposition | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Approximating the inverse and the Moore-Penrose inverse of complex matrices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5879 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Torregrosa Sánchez, JR.; Zafar, F. (2019). Approximating the inverse and the Moore-Penrose inverse of complex matrices. Mathematical Methods in the Applied Sciences. 42(17):5920-5928. https://doi.org/10.1002/mma.5879 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5879 | es_ES |
dc.description.upvformatpinicio | 5920 | es_ES |
dc.description.upvformatpfin | 5928 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 17 | es_ES |
dc.relation.pasarela | S\393518 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Schlumberger Foundation | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647 | es_ES |
dc.description.references | Weiguo, L., Juan, L., & Tiantian, Q. (2013). A family of iterative methods for computing Moore–Penrose inverse of a matrix. Linear Algebra and its Applications, 438(1), 47-56. doi:10.1016/j.laa.2012.08.004 | es_ES |
dc.description.references | Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778 | es_ES |
dc.description.references | Schulz, G. (1933). Iterative Berechung der reziproken Matrix. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 13(1), 57-59. doi:10.1002/zamm.19330130111 | es_ES |
dc.description.references | Soleymani, F., Salmani, H., & Rasouli, M. (2014). Finding the Moore–Penrose inverse by a new matrix iteration. Journal of Applied Mathematics and Computing, 47(1-2), 33-48. doi:10.1007/s12190-014-0759-4 | es_ES |
dc.description.references | Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707 | es_ES |