- -

Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels

Mostrar el registro completo del ítem

Nadal Gisbert, AV.; Segura Alcaraz, JG.; Juliá Sanchis, E.; Gadea Borrell, JM.; Montava-Belda, I. (2019). Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels. Materialwissenschaft und Werkstofftechnik. 50(1):14-24. https://doi.org/10.1002/mawe.201700131

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159355

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels
Otro titulo: Evaluierung des akustischen und dynamischen Verhaltens von Ethylen-Vinyl-Acetat Paneelen
Autor: Nadal Gisbert, Antonio Vicente Segura Alcaraz, Jorge Gabriel Juliá Sanchis, Ernesto Gadea Borrell, José Mª Montava-Belda, Isaac
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
[Otros] Ethylen-Vinylacetat-Platten mit hohem Vinylacetatgehalt und einer geschlossenen Zellenstruktur wurden durch verschiedene experimentelle Techniken als ein erster Ansatz zur Bewertung des Vibrations- und Akustikverhaltens ...[+]


[EN] Ethylene vinyl acetate panels, with high vinyl acetate content and a closed-cell structure, were studied through various experimental techniques as a first approach to evaluate the vibrational and acoustic behaviour ...[+]
Palabras clave: Dynamic stiffness , Damping , Sound transmission loss , Acoustic impedance , Dynamische Steifheit , Dämpfung , Schallübertragungsverlust , Akustische Impedanz
Derechos de uso: Cerrado
Fuente:
Materialwissenschaft und Werkstofftechnik. (issn: 0933-5137 )
DOI: 10.1002/mawe.201700131
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mawe.201700131
Agradecimientos:
We would like to express our sincere gratitude to the PEMARSA,s.a. Company, which has provided the test specimens to carry out the experiments.
Tipo: Artículo

References

Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17. doi:10.1016/j.susmat.2015.05.002

Allan, P. S., Ahmadnia, A., Withnall, R., & Silver, J. (2012). Sound transmission testing of polymer compounds. Polymer Testing, 31(2), 312-321. doi:10.1016/j.polymertesting.2011.12.007

Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 [+]
Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17. doi:10.1016/j.susmat.2015.05.002

Allan, P. S., Ahmadnia, A., Withnall, R., & Silver, J. (2012). Sound transmission testing of polymer compounds. Polymer Testing, 31(2), 312-321. doi:10.1016/j.polymertesting.2011.12.007

Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9

Vér, I. L. (1971). Impact Noise Isolation of Composite Floors. The Journal of the Acoustical Society of America, 50(4A), 1043-1050. doi:10.1121/1.1912726

Schiavi, A., Belli, A. P., & Russo, F. (2005). Estimation of Acoustical Performance of Floating Floors from Dynamic Stiffness of Resilient Layers. Building Acoustics, 12(2), 99-113. doi:10.1260/1351010054037938

2004 066

Branco, F. G., & Godinho, L. (2013). On the use of lightweight mortars for the minimization of impact sound transmission. Construction and Building Materials, 45, 184-191. doi:10.1016/j.conbuildmat.2013.04.001

Pastor, J. M., García, L. D., Quintana, S., & Peña, J. (2014). Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties of for their use as sound barriers. Construction and Building Materials, 54, 541-549. doi:10.1016/j.conbuildmat.2013.12.040

Nadal Gisbert, A., Gadea Borrell, J. M., Parres García, F., Juliá Sanchis, E., Crespo Amorós, J. E., Segura Alcaraz, J., & Salas Vicente, F. (2014). Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar. Construction and Building Materials, 50, 671-682. doi:10.1016/j.conbuildmat.2013.10.018

Faustino, J., Pereira, L., Soares, S., Cruz, D., Paiva, A., Varum, H., … Pinto, J. (2012). Impact sound insulation technique using corn cob particleboard. Construction and Building Materials, 37, 153-159. doi:10.1016/j.conbuildmat.2012.07.064

Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809

Kino, N., Nakano, G., & Suzuki, Y. (2012). Non-acoustical and acoustical properties of reticulated and partially reticulated polyurethane foams. Applied Acoustics, 73(2), 95-108. doi:10.1016/j.apacoust.2011.06.009

Jahani, D., Ameli, A., Jung, P. U., Barzegari, M. R., Park, C. B., & Naguib, H. (2014). Open-cell cavity-integrated injection-molded acoustic polypropylene foams. Materials & Design, 53, 20-28. doi:10.1016/j.matdes.2013.06.063

Ramorino, G., Vetturi, D., Cambiaghi, D., Pegoretti, A., & Ricco, T. (2003). Developments in dynamic testing of rubber compounds: assessment of non-linear effects. Polymer Testing, 22(6), 681-687. doi:10.1016/s0142-9418(02)00176-9

Lin, T. R., Farag, N. H., & Pan, J. (2005). Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Applied Acoustics, 66(7), 829-844. doi:10.1016/j.apacoust.2004.10.004

Kulik, V. M., Semenov, B. N., Boiko, A. V., Seoudi, B. M., Chun, H. H., & Lee, I. (2008). Measurement of Dynamic Properties of Viscoelastic Materials. Experimental Mechanics, 49(3), 417-425. doi:10.1007/s11340-008-9165-x

Koblar, D., & Boltežar, M. (2016). Evaluation of the Frequency-Dependent Young’s Modulus and Damping Factor of Rubber from Experiment and Their Implementation in a Finite-Element Analysis. Experimental Techniques, 40(1), 235-244. doi:10.1007/s40799-016-0027-7

Borrell, J. M. G., Alcaraz, J. G. S., & Sanchis, E. J. (2016). Experimental and Numerical Acoustic Characterization of Laminated Floors. Experimental Techniques, 40(2), 857-863. doi:10.1007/s40799-016-0086-9

Carbajo, J., Esquerdo-Lloret, T. V., Ramis, J., Nadal-Gisbert, A. V., & Denia, F. D. (2015). Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Materiales de Construcción, 65(320), e072. doi:10.3989/mc.2015.01115

Chung, J. Y., & Blaser, D. A. (1980). Transfer function method of measuring in‐duct acoustic properties. I. Theory. The Journal of the Acoustical Society of America, 68(3), 907-913. doi:10.1121/1.384778

Song, B. H., & Bolton, J. S. (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America, 107(3), 1131-1152. doi:10.1121/1.428404

Sgard, F. C., Atalla, N., & Nicolas, J. (2000). A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. The Journal of the Acoustical Society of America, 108(6), 2865-2872. doi:10.1121/1.1322022

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem