Mostrar el registro sencillo del ítem
dc.contributor.author | Nadal Gisbert, Antonio Vicente | es_ES |
dc.contributor.author | Segura Alcaraz, Jorge Gabriel | es_ES |
dc.contributor.author | Juliá Sanchis, Ernesto | es_ES |
dc.contributor.author | Gadea Borrell, José Mª | es_ES |
dc.contributor.author | Montava-Belda, Isaac | es_ES |
dc.date.accessioned | 2021-01-19T04:32:28Z | |
dc.date.available | 2021-01-19T04:32:28Z | |
dc.date.issued | 2019-01 | es_ES |
dc.identifier.issn | 0933-5137 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159355 | |
dc.description.abstract | [Otros] Ethylen-Vinylacetat-Platten mit hohem Vinylacetatgehalt und einer geschlossenen Zellenstruktur wurden durch verschiedene experimentelle Techniken als ein erster Ansatz zur Bewertung des Vibrations- und Akustikverhaltens von Ethylen-Vinylacetat-Platten fur Bauanwendungen untersucht. Probekorper wurden mit unterschiedlichen Dichten und Dicken getestet, um den Einfluss dieser beiden Parameter auf die akustische Impedanz, den Schallubertragungsverlust, die dynamische Steifigkeit und die Schwachungsdampfung zu bewerten. Die erzielten Ergebnisse zeigen Schallubertragungsverlustwerte fur Frequenzen bis zu 2500Hz mit einem Maximum von ca. 63,7dB. Die Ergebnisse der dynamischen Steifigkeit zeigten einen Breitenwertbereich mit einem Hochstwert von 350 MN/m(3) und einem Minimum von 23,3MN/m(3). Auf der anderen Seite erzeugt das Fehlen von Poren in der Oberflache eine hohe akustische Impedanz. Die Ergebnisse dieser Studie zeigen, dass Ethylen-Vinylacetat geeignete Eigenschaften, vor allem als akustisches und vibrationsisolierendes Material, fur Bodenbelage und Lichttrennwande aufweist. | es_ES |
dc.description.abstract | [EN] Ethylene vinyl acetate panels, with high vinyl acetate content and a closed-cell structure, were studied through various experimental techniques as a first approach to evaluate the vibrational and acoustic behaviour of ethylene vinyl acetate panels for building applications. Test specimens, with a variety of densities and thicknesses were tested to evaluate the influence of these two parameters on acoustic impedance, sound transmission loss, dynamic stiffness and attenuation of vibrations. The results obtained shows sound transmission loss values for frequencies up to 2500Hz with a maximum of about 63.7dB, the dynamic stiffness results presented a wide range, with a maximum value of 350MN/m(3) and a minimum value of 23.3MN/m(3).On the other hand the lack of pore in the surface produce a high acoustic impedance. It can be concluded that ethylene vinyl acetate presents appropriate characteristics, mainly as an acoustic and vibration isolating material, for floorings and light partitions. | es_ES |
dc.description.sponsorship | We would like to express our sincere gratitude to the PEMARSA,s.a. Company, which has provided the test specimens to carry out the experiments. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Materialwissenschaft und Werkstofftechnik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dynamic stiffness | es_ES |
dc.subject | Damping | es_ES |
dc.subject | Sound transmission loss | es_ES |
dc.subject | Acoustic impedance | es_ES |
dc.subject | Dynamische Steifheit | es_ES |
dc.subject | Dämpfung | es_ES |
dc.subject | Schallübertragungsverlust | es_ES |
dc.subject | Akustische Impedanz | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels | es_ES |
dc.title.alternative | Evaluierung des akustischen und dynamischen Verhaltens von Ethylen-Vinyl-Acetat Paneelen | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mawe.201700131 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Nadal Gisbert, AV.; Segura Alcaraz, JG.; Juliá Sanchis, E.; Gadea Borrell, JM.; Montava-Belda, I. (2019). Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels. Materialwissenschaft und Werkstofftechnik. 50(1):14-24. https://doi.org/10.1002/mawe.201700131 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mawe.201700131 | es_ES |
dc.description.upvformatpinicio | 14 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\378012 | es_ES |
dc.description.references | Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17. doi:10.1016/j.susmat.2015.05.002 | es_ES |
dc.description.references | Allan, P. S., Ahmadnia, A., Withnall, R., & Silver, J. (2012). Sound transmission testing of polymer compounds. Polymer Testing, 31(2), 312-321. doi:10.1016/j.polymertesting.2011.12.007 | es_ES |
dc.description.references | Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 | es_ES |
dc.description.references | Vér, I. L. (1971). Impact Noise Isolation of Composite Floors. The Journal of the Acoustical Society of America, 50(4A), 1043-1050. doi:10.1121/1.1912726 | es_ES |
dc.description.references | Schiavi, A., Belli, A. P., & Russo, F. (2005). Estimation of Acoustical Performance of Floating Floors from Dynamic Stiffness of Resilient Layers. Building Acoustics, 12(2), 99-113. doi:10.1260/1351010054037938 | es_ES |
dc.description.references | 2004 066 | es_ES |
dc.description.references | Branco, F. G., & Godinho, L. (2013). On the use of lightweight mortars for the minimization of impact sound transmission. Construction and Building Materials, 45, 184-191. doi:10.1016/j.conbuildmat.2013.04.001 | es_ES |
dc.description.references | Pastor, J. M., García, L. D., Quintana, S., & Peña, J. (2014). Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties of for their use as sound barriers. Construction and Building Materials, 54, 541-549. doi:10.1016/j.conbuildmat.2013.12.040 | es_ES |
dc.description.references | Nadal Gisbert, A., Gadea Borrell, J. M., Parres García, F., Juliá Sanchis, E., Crespo Amorós, J. E., Segura Alcaraz, J., & Salas Vicente, F. (2014). Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar. Construction and Building Materials, 50, 671-682. doi:10.1016/j.conbuildmat.2013.10.018 | es_ES |
dc.description.references | Faustino, J., Pereira, L., Soares, S., Cruz, D., Paiva, A., Varum, H., … Pinto, J. (2012). Impact sound insulation technique using corn cob particleboard. Construction and Building Materials, 37, 153-159. doi:10.1016/j.conbuildmat.2012.07.064 | es_ES |
dc.description.references | Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809 | es_ES |
dc.description.references | Kino, N., Nakano, G., & Suzuki, Y. (2012). Non-acoustical and acoustical properties of reticulated and partially reticulated polyurethane foams. Applied Acoustics, 73(2), 95-108. doi:10.1016/j.apacoust.2011.06.009 | es_ES |
dc.description.references | Jahani, D., Ameli, A., Jung, P. U., Barzegari, M. R., Park, C. B., & Naguib, H. (2014). Open-cell cavity-integrated injection-molded acoustic polypropylene foams. Materials & Design, 53, 20-28. doi:10.1016/j.matdes.2013.06.063 | es_ES |
dc.description.references | Ramorino, G., Vetturi, D., Cambiaghi, D., Pegoretti, A., & Ricco, T. (2003). Developments in dynamic testing of rubber compounds: assessment of non-linear effects. Polymer Testing, 22(6), 681-687. doi:10.1016/s0142-9418(02)00176-9 | es_ES |
dc.description.references | Lin, T. R., Farag, N. H., & Pan, J. (2005). Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Applied Acoustics, 66(7), 829-844. doi:10.1016/j.apacoust.2004.10.004 | es_ES |
dc.description.references | Kulik, V. M., Semenov, B. N., Boiko, A. V., Seoudi, B. M., Chun, H. H., & Lee, I. (2008). Measurement of Dynamic Properties of Viscoelastic Materials. Experimental Mechanics, 49(3), 417-425. doi:10.1007/s11340-008-9165-x | es_ES |
dc.description.references | Koblar, D., & Boltežar, M. (2016). Evaluation of the Frequency-Dependent Young’s Modulus and Damping Factor of Rubber from Experiment and Their Implementation in a Finite-Element Analysis. Experimental Techniques, 40(1), 235-244. doi:10.1007/s40799-016-0027-7 | es_ES |
dc.description.references | Borrell, J. M. G., Alcaraz, J. G. S., & Sanchis, E. J. (2016). Experimental and Numerical Acoustic Characterization of Laminated Floors. Experimental Techniques, 40(2), 857-863. doi:10.1007/s40799-016-0086-9 | es_ES |
dc.description.references | Carbajo, J., Esquerdo-Lloret, T. V., Ramis, J., Nadal-Gisbert, A. V., & Denia, F. D. (2015). Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Materiales de Construcción, 65(320), e072. doi:10.3989/mc.2015.01115 | es_ES |
dc.description.references | Chung, J. Y., & Blaser, D. A. (1980). Transfer function method of measuring in‐duct acoustic properties. I. Theory. The Journal of the Acoustical Society of America, 68(3), 907-913. doi:10.1121/1.384778 | es_ES |
dc.description.references | Song, B. H., & Bolton, J. S. (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America, 107(3), 1131-1152. doi:10.1121/1.428404 | es_ES |
dc.description.references | Sgard, F. C., Atalla, N., & Nicolas, J. (2000). A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. The Journal of the Acoustical Society of America, 108(6), 2865-2872. doi:10.1121/1.1322022 | es_ES |