- -

Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nadal Gisbert, Antonio Vicente es_ES
dc.contributor.author Segura Alcaraz, Jorge Gabriel es_ES
dc.contributor.author Juliá Sanchis, Ernesto es_ES
dc.contributor.author Gadea Borrell, José Mª es_ES
dc.contributor.author Montava-Belda, Isaac es_ES
dc.date.accessioned 2021-01-19T04:32:28Z
dc.date.available 2021-01-19T04:32:28Z
dc.date.issued 2019-01 es_ES
dc.identifier.issn 0933-5137 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159355
dc.description.abstract [Otros] Ethylen-Vinylacetat-Platten mit hohem Vinylacetatgehalt und einer geschlossenen Zellenstruktur wurden durch verschiedene experimentelle Techniken als ein erster Ansatz zur Bewertung des Vibrations- und Akustikverhaltens von Ethylen-Vinylacetat-Platten fur Bauanwendungen untersucht. Probekorper wurden mit unterschiedlichen Dichten und Dicken getestet, um den Einfluss dieser beiden Parameter auf die akustische Impedanz, den Schallubertragungsverlust, die dynamische Steifigkeit und die Schwachungsdampfung zu bewerten. Die erzielten Ergebnisse zeigen Schallubertragungsverlustwerte fur Frequenzen bis zu 2500Hz mit einem Maximum von ca. 63,7dB. Die Ergebnisse der dynamischen Steifigkeit zeigten einen Breitenwertbereich mit einem Hochstwert von 350 MN/m(3) und einem Minimum von 23,3MN/m(3). Auf der anderen Seite erzeugt das Fehlen von Poren in der Oberflache eine hohe akustische Impedanz. Die Ergebnisse dieser Studie zeigen, dass Ethylen-Vinylacetat geeignete Eigenschaften, vor allem als akustisches und vibrationsisolierendes Material, fur Bodenbelage und Lichttrennwande aufweist. es_ES
dc.description.abstract [EN] Ethylene vinyl acetate panels, with high vinyl acetate content and a closed-cell structure, were studied through various experimental techniques as a first approach to evaluate the vibrational and acoustic behaviour of ethylene vinyl acetate panels for building applications. Test specimens, with a variety of densities and thicknesses were tested to evaluate the influence of these two parameters on acoustic impedance, sound transmission loss, dynamic stiffness and attenuation of vibrations. The results obtained shows sound transmission loss values for frequencies up to 2500Hz with a maximum of about 63.7dB, the dynamic stiffness results presented a wide range, with a maximum value of 350MN/m(3) and a minimum value of 23.3MN/m(3).On the other hand the lack of pore in the surface produce a high acoustic impedance. It can be concluded that ethylene vinyl acetate presents appropriate characteristics, mainly as an acoustic and vibration isolating material, for floorings and light partitions. es_ES
dc.description.sponsorship We would like to express our sincere gratitude to the PEMARSA,s.a. Company, which has provided the test specimens to carry out the experiments. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Materialwissenschaft und Werkstofftechnik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dynamic stiffness es_ES
dc.subject Damping es_ES
dc.subject Sound transmission loss es_ES
dc.subject Acoustic impedance es_ES
dc.subject Dynamische Steifheit es_ES
dc.subject Dämpfung es_ES
dc.subject Schallübertragungsverlust es_ES
dc.subject Akustische Impedanz es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels es_ES
dc.title.alternative Evaluierung des akustischen und dynamischen Verhaltens von Ethylen-Vinyl-Acetat Paneelen es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mawe.201700131 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Nadal Gisbert, AV.; Segura Alcaraz, JG.; Juliá Sanchis, E.; Gadea Borrell, JM.; Montava-Belda, I. (2019). Evaluation of acoustic and dynamic behaviour of ethylene vinyl acetate panels. Materialwissenschaft und Werkstofftechnik. 50(1):14-24. https://doi.org/10.1002/mawe.201700131 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mawe.201700131 es_ES
dc.description.upvformatpinicio 14 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\378012 es_ES
dc.description.references Asdrubali, F., D’Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17. doi:10.1016/j.susmat.2015.05.002 es_ES
dc.description.references Allan, P. S., Ahmadnia, A., Withnall, R., & Silver, J. (2012). Sound transmission testing of polymer compounds. Polymer Testing, 31(2), 312-321. doi:10.1016/j.polymertesting.2011.12.007 es_ES
dc.description.references Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 es_ES
dc.description.references Vér, I. L. (1971). Impact Noise Isolation of Composite Floors. The Journal of the Acoustical Society of America, 50(4A), 1043-1050. doi:10.1121/1.1912726 es_ES
dc.description.references Schiavi, A., Belli, A. P., & Russo, F. (2005). Estimation of Acoustical Performance of Floating Floors from Dynamic Stiffness of Resilient Layers. Building Acoustics, 12(2), 99-113. doi:10.1260/1351010054037938 es_ES
dc.description.references 2004 066 es_ES
dc.description.references Branco, F. G., & Godinho, L. (2013). On the use of lightweight mortars for the minimization of impact sound transmission. Construction and Building Materials, 45, 184-191. doi:10.1016/j.conbuildmat.2013.04.001 es_ES
dc.description.references Pastor, J. M., García, L. D., Quintana, S., & Peña, J. (2014). Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties of for their use as sound barriers. Construction and Building Materials, 54, 541-549. doi:10.1016/j.conbuildmat.2013.12.040 es_ES
dc.description.references Nadal Gisbert, A., Gadea Borrell, J. M., Parres García, F., Juliá Sanchis, E., Crespo Amorós, J. E., Segura Alcaraz, J., & Salas Vicente, F. (2014). Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar. Construction and Building Materials, 50, 671-682. doi:10.1016/j.conbuildmat.2013.10.018 es_ES
dc.description.references Faustino, J., Pereira, L., Soares, S., Cruz, D., Paiva, A., Varum, H., … Pinto, J. (2012). Impact sound insulation technique using corn cob particleboard. Construction and Building Materials, 37, 153-159. doi:10.1016/j.conbuildmat.2012.07.064 es_ES
dc.description.references Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809 es_ES
dc.description.references Kino, N., Nakano, G., & Suzuki, Y. (2012). Non-acoustical and acoustical properties of reticulated and partially reticulated polyurethane foams. Applied Acoustics, 73(2), 95-108. doi:10.1016/j.apacoust.2011.06.009 es_ES
dc.description.references Jahani, D., Ameli, A., Jung, P. U., Barzegari, M. R., Park, C. B., & Naguib, H. (2014). Open-cell cavity-integrated injection-molded acoustic polypropylene foams. Materials & Design, 53, 20-28. doi:10.1016/j.matdes.2013.06.063 es_ES
dc.description.references Ramorino, G., Vetturi, D., Cambiaghi, D., Pegoretti, A., & Ricco, T. (2003). Developments in dynamic testing of rubber compounds: assessment of non-linear effects. Polymer Testing, 22(6), 681-687. doi:10.1016/s0142-9418(02)00176-9 es_ES
dc.description.references Lin, T. R., Farag, N. H., & Pan, J. (2005). Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Applied Acoustics, 66(7), 829-844. doi:10.1016/j.apacoust.2004.10.004 es_ES
dc.description.references Kulik, V. M., Semenov, B. N., Boiko, A. V., Seoudi, B. M., Chun, H. H., & Lee, I. (2008). Measurement of Dynamic Properties of Viscoelastic Materials. Experimental Mechanics, 49(3), 417-425. doi:10.1007/s11340-008-9165-x es_ES
dc.description.references Koblar, D., & Boltežar, M. (2016). Evaluation of the Frequency-Dependent Young’s Modulus and Damping Factor of Rubber from Experiment and Their Implementation in a Finite-Element Analysis. Experimental Techniques, 40(1), 235-244. doi:10.1007/s40799-016-0027-7 es_ES
dc.description.references Borrell, J. M. G., Alcaraz, J. G. S., & Sanchis, E. J. (2016). Experimental and Numerical Acoustic Characterization of Laminated Floors. Experimental Techniques, 40(2), 857-863. doi:10.1007/s40799-016-0086-9 es_ES
dc.description.references Carbajo, J., Esquerdo-Lloret, T. V., Ramis, J., Nadal-Gisbert, A. V., & Denia, F. D. (2015). Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Materiales de Construcción, 65(320), e072. doi:10.3989/mc.2015.01115 es_ES
dc.description.references Chung, J. Y., & Blaser, D. A. (1980). Transfer function method of measuring in‐duct acoustic properties. I. Theory. The Journal of the Acoustical Society of America, 68(3), 907-913. doi:10.1121/1.384778 es_ES
dc.description.references Song, B. H., & Bolton, J. S. (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America, 107(3), 1131-1152. doi:10.1121/1.428404 es_ES
dc.description.references Sgard, F. C., Atalla, N., & Nicolas, J. (2000). A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. The Journal of the Acoustical Society of America, 108(6), 2865-2872. doi:10.1121/1.1322022 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem