- -

Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems

Show full item record

Lázaro, M. (2019). Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems. Mathematics and Mechanics of Solids. 24(12):3843-3861. https://doi.org/10.1177/1081286519858382

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159363

Files in this item

Item Metadata

Title: Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems
Author: Lázaro, Mario
UPV Unit: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Issued date:
Abstract:
[EN] In this paper, exact closed forms of critical damping manifolds for multiple-kernel-based nonviscous single-degree-of-freedom oscillators are derived. The dissipative forces are assumed to depend on the past history ...[+]
Subjects: Nonviscous damping , Critical damping , Critical parameter , Overdamped region , Critical curves , Critical surfaces , Viscoelastic damping , Exponential kernel
Copyrigths: Reserva de todos los derechos
Source:
Mathematics and Mechanics of Solids. (issn: 1081-2865 )
DOI: 10.1177/1081286519858382
Publisher:
SAGE Publications
Publisher version: https://doi.org/10.1177/1081286519858382
Type: Artículo

References

Golla, D. F., & Hughes, P. C. (1985). Dynamics of Viscoelastic Structures—A Time-Domain, Finite Element Formulation. Journal of Applied Mechanics, 52(4), 897-906. doi:10.1115/1.3169166

Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032

Biot, M. A. (1955). Variational Principles in Irreversible Thermodynamics with Application to Viscoelasticity. Physical Review, 97(6), 1463-1469. doi:10.1103/physrev.97.1463 [+]
Golla, D. F., & Hughes, P. C. (1985). Dynamics of Viscoelastic Structures—A Time-Domain, Finite Element Formulation. Journal of Applied Mechanics, 52(4), 897-906. doi:10.1115/1.3169166

Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032

Biot, M. A. (1955). Variational Principles in Irreversible Thermodynamics with Application to Viscoelasticity. Physical Review, 97(6), 1463-1469. doi:10.1103/physrev.97.1463

Lázaro, M. (2015). Nonviscous Modes of Nonproportionally Damped Viscoelastic Systems. Journal of Applied Mechanics, 82(12). doi:10.1115/1.4031569

Mohammadi, S. A., & Voss, H. (2017). Variational characterization of real eigenvalues in linear viscoelastic oscillators. Mathematics and Mechanics of Solids, 23(10), 1377-1388. doi:10.1177/1081286517726368

Mohammadi, S. A., & Voss, H. (2019). On the distribution of real eigenvalues in linear viscoelastic oscillators. Numerical Linear Algebra with Applications, 26(2), e2228. doi:10.1002/nla.2228

Muravyov, A. (1998). FORCED VIBRATION RESPONSES OF A VISCOELASTIC STRUCTURE. Journal of Sound and Vibration, 218(5), 892-907. doi:10.1006/jsvi.1998.1819

Adhikari, S. (2005). Qualitative dynamic characteristics of a non-viscously damped oscillator. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059), 2269-2288. doi:10.1098/rspa.2005.1485

Muller, P. (2005). Are the eigensolutions of a 1-d.o.f. system with viscoelastic damping oscillatory or not? Journal of Sound and Vibration, 285(1-2), 501-509. doi:10.1016/j.jsv.2004.09.007

Adhikari, S. (2008). Dynamic Response Characteristics of a Nonviscously Damped Oscillator. Journal of Applied Mechanics, 75(1). doi:10.1115/1.2755096

Lázaro, M. (2019). Critical damping in nonviscously damped linear systems. Applied Mathematical Modelling, 65, 661-675. doi:10.1016/j.apm.2018.09.011

Bert, C. W. (1973). Material damping. Journal of Sound and Vibration, 29(2), 129-153. doi:10.1016/s0022-460x(73)80131-2

Muravyov, A., & Hutton, S. G. (1998). Free Vibration Response Characteristics of a Simple Elasto-Hereditary System. Journal of Vibration and Acoustics, 120(2), 628-632. doi:10.1115/1.2893873

[-]

This item appears in the following Collection(s)

Show full item record