- -

Silver nanocluster in zeolites. ADSORPTION of ETHYLENE traces for fruit preservation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Silver nanocluster in zeolites. ADSORPTION of ETHYLENE traces for fruit preservation

Mostrar el registro completo del ítem

Cisneros, L.; Gao, F.; Corma Canós, A. (2019). Silver nanocluster in zeolites. ADSORPTION of ETHYLENE traces for fruit preservation. Microporous and Mesoporous Materials. 283:25-30. https://doi.org/10.1016/j.micromeso.2019.03.032

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159514

Ficheros en el ítem

Metadatos del ítem

Título: Silver nanocluster in zeolites. ADSORPTION of ETHYLENE traces for fruit preservation
Autor: Cisneros, Larisha Gao, Fei Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Removal of trace amounts of C2H4 from air streams at low temperature is technologically important for fruit preservation in warehouses. For that reason, a systematic quantitative and comparative study of Ag-zeolites ...[+]
Palabras clave: Ethylene , Microporous zeolites
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Microporous and Mesoporous Materials. (issn: 1387-1811 )
DOI: 10.1016/j.micromeso.2019.03.032
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.micromeso.2019.03.032
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//3115621/
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
Agradecimientos:
FG acknowledges a research fellowships from Jiangsu Key Laboratory of Vehicle Emissions Control Program of China. LC acknowledges Mexican Research program CONACyT (3115621) and ITQ for a scholarship. The economical support ...[+]
Tipo: Artículo

References

Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279-292. doi:10.1016/s0925-5214(98)00091-x

Kader, A. A. (2003). A Perspective on Postharvest Horticulture (1978-2003). HortScience, 38(5), 1004-1008. doi:10.21273/hortsci.38.5.1004

Blidi, A. E., Rigal, L., Malmary, G., Molinier, J., & Torres, L. (1993). Ethylene removal for long term conservation of fruits and vegetables. Food Quality and Preference, 4(3), 119-126. doi:10.1016/0950-3293(93)90154-x [+]
Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279-292. doi:10.1016/s0925-5214(98)00091-x

Kader, A. A. (2003). A Perspective on Postharvest Horticulture (1978-2003). HortScience, 38(5), 1004-1008. doi:10.21273/hortsci.38.5.1004

Blidi, A. E., Rigal, L., Malmary, G., Molinier, J., & Torres, L. (1993). Ethylene removal for long term conservation of fruits and vegetables. Food Quality and Preference, 4(3), 119-126. doi:10.1016/0950-3293(93)90154-x

Wojciechowki, J., & Haber, J. (1982). Swingtherm - a new economic process for the catalytic burning of flue gases. Applied Catalysis, 4(3), 275-280. doi:10.1016/0166-9834(82)80110-3

Li, J., Ma, C., Xu, X., Yu, J., Hao, Z., & Qiao, S. (2008). Efficient Elimination of Trace Ethylene over Nano-Gold Catalyst under Ambient Conditions. Environmental Science & Technology, 42(23), 8947-8951. doi:10.1021/es801458v

H.K. Hirayama and K. Sakurai, EP0914864A3, 2000/28.

Ma, C. Y., Mu, Z., Li, J. J., Jin, Y. G., Cheng, J., Lu, G. Q., … Qiao, S. Z. (2010). Mesoporous Co3O4 and Au/Co3O4 Catalysts for Low-Temperature Oxidation of Trace Ethylene. Journal of the American Chemical Society, 132(8), 2608-2613. doi:10.1021/ja906274t

Xue, W. J., Wang, Y. F., Li, P., Liu, Z.-T., Hao, Z. P., & Ma, C. Y. (2011). Morphology effects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for complete oxidation of trace ethylene. Catalysis Communications, 12(13), 1265-1268. doi:10.1016/j.catcom.2011.04.003

Jiang, C., Hara, K., & Fukuoka, A. (2013). Low-Temperature Oxidation of Ethylene over Platinum Nanoparticles Supported on Mesoporous Silica. Angewandte Chemie International Edition, 52(24), 6265-6268. doi:10.1002/anie.201300496

Aguado, S., Bergeret, G., Daniel, C., & Farrusseng, D. (2012). Absolute Molecular Sieve Separation of Ethylene/Ethane Mixtures with Silver Zeolite A. Journal of the American Chemical Society, 134(36), 14635-14637. doi:10.1021/ja305663k

Yang, R. T., & Kikkinides, E. S. (1995). New sorbents for olefin/paraffin separations by adsorption viaπ -complexation. AIChE Journal, 41(3), 509-517. doi:10.1002/aic.690410309

Trinh, Q. H., Lee, S. B., & Mok, Y. S. (2015). Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite. Journal of Hazardous Materials, 285, 525-534. doi:10.1016/j.jhazmat.2014.12.019

Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R. E., Herrera-Urbina, R., Tánori, J., Iñiguez-Palomares, C., & Maldonado, A. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Research Letters, 8(1). doi:10.1186/1556-276x-8-318

Mendivil, M. I., Krishnan, B., Sanchez, F. A., Martinez, S., Aguilar-Martinez, J. A., Castillo, G. A., … Shaji, S. (2012). Synthesis of silver nanoparticles and antimony oxide nanocrystals by pulsed laser ablation in liquid media. Applied Physics A, 110(4), 809-816. doi:10.1007/s00339-012-7157-2

Patdhanagul, N., Srithanratana, T., Rangsriwatananon, K., & Hengrasmee, S. (2010). Ethylene adsorption on cationic surfactant modified zeolite NaY. Microporous and Mesoporous Materials, 131(1-3), 97-102. doi:10.1016/j.micromeso.2009.12.008

Shibata, J. (2004). Ag cluster as active species for SCR of NO by propane in the presence of hydrogen over Ag-MFI. Journal of Catalysis, 222(2), 368-376. doi:10.1016/j.jcat.2003.11.007

Texter, J., Gonsiorowski, T., & Kellerman, R. (1981). 5s←4dtransition of trigonalAg+in zeolite. Physical Review B, 23(9), 4407-4418. doi:10.1103/physrevb.23.4407

Keshavaraja, A., She, X., & Flytzani-Stephanopoulos, M. (2000). Selective catalytic reduction of NO with methane over Ag-alumina catalysts. Applied Catalysis B: Environmental, 27(1), L1-L9. doi:10.1016/s0926-3373(00)00131-4

Gachard, E., Belloni, J., & Subramanian, M. A. (1996). Optical and EPR spectroscopic studies of silver clusters in Ag,Na-Y zeolite by γ-irradiation. J. Mater. Chem., 6(5), 867-870. doi:10.1039/jm9960600867

Mulvaney, P., & Henglein, A. (1990). Long-lived nonmetallic silver clusters in aqueous solution: a pulse radiolysis study of their formation. The Journal of Physical Chemistry, 94(10), 4182-4188. doi:10.1021/j100373a056

Linnert, T., Mulvaney, P., Henglein, A., & Weller, H. (1990). Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis. Journal of the American Chemical Society, 112(12), 4657-4664. doi:10.1021/ja00168a005

Ozin, G. A., & Hugues, F. (1983). Silver atoms and small silver clusters stabilized in zeolite Y: optical spectroscopy. The Journal of Physical Chemistry, 87(1), 94-97. doi:10.1021/j100224a022

Shibata, J., Shimizu, K., Takada, Y., Shichi, A., Yoshida, H., Satokawa, S., … Hattori, T. (2004). Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. Journal of Catalysis, 227(2), 367-374. doi:10.1016/j.jcat.2004.08.007

Bethke, K. A., & Kung, H. H. (1997). Supported Ag Catalysts for the Lean Reduction of NO with C3H6. Journal of Catalysis, 172(1), 93-102. doi:10.1006/jcat.1997.1794

Bogdanchikova, N. (2002). On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide. Applied Catalysis B: Environmental, 36(4), 287-297. doi:10.1016/s0926-3373(01)00286-7

RICHTER, M. (2004). The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag/Al2O3. Applied Catalysis B: Environmental, 51(4), 261-274. doi:10.1016/j.apcatb.2004.02.015

Dong, B., Retoux, R., de Waele, V., Chiodo, S. G., Mineva, T., Cardin, J., & Mintova, S. (2017). Sodalite cages of EMT zeolite confined neutral molecular-like silver clusters. Microporous and Mesoporous Materials, 244, 74-82. doi:10.1016/j.micromeso.2017.02.029

Ferreira, L., Fonseca, A. M., Botelho, G., Aguiar, C. A.-, & Neves, I. C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Microporous and Mesoporous Materials, 160, 126-132. doi:10.1016/j.micromeso.2012.05.006

Wolan, J. T., & Hoflund, G. B. (1998). Surface characterization study of AgF and AgF2 powders using XPS and ISS. Applied Surface Science, 125(3-4), 251-258. doi:10.1016/s0169-4332(97)00498-4

Jayaraman, A., Yang, R. T., Munson, C. L., & Chinn, D. (2001). Deactivation of π-Complexation Adsorbents by Hydrogen and Rejuvenation by Oxidation. Industrial & Engineering Chemistry Research, 40(20), 4370-4376. doi:10.1021/ie0102753

Padin, J., & Yang, R. T. (2000). New sorbents for olefin/paraffin separations by adsorption via π-complexation: synthesis and effects of substrates. Chemical Engineering Science, 55(14), 2607-2616. doi:10.1016/s0009-2509(99)00537-0

Richter, M. (2002). Combinatorial preparation and high-throughput catalytic tests of multi-component deNOx catalysts. Applied Catalysis B: Environmental, 36(4), 261-277. doi:10.1016/s0926-3373(01)00290-9

Tsutsumi, K., & Takahashi, H. (1972). The Formation of Metallic Silver in Silver-Form Zeolites. Bulletin of the Chemical Society of Japan, 45(8), 2332-2337. doi:10.1246/bcsj.45.2332

Trinh, Q. H., & Mok, Y. S. (2015). Effect of the adsorbent/catalyst preparation method and plasma reactor configuration on the removal of dilute ethylene from air stream. Catalysis Today, 256, 170-177. doi:10.1016/j.cattod.2015.01.027

Berndt, H., Richter, M., Gerlach, T., & Baerns, M. (1998). Influence of Brnsted acidity on the redox properties of silver species in zeolite mordenite. Journal of the Chemical Society, Faraday Transactions, 94(14), 2043-2046. doi:10.1039/a801524d

Beyer, H. K., & Jacobs, P. A. (1982). Chemical Evidence for Charged Clusters in Silver Zeolites. Studies in Surface Science and Catalysis, 95-102. doi:10.1016/s0167-2991(09)60997-6

Beyer, H., Jacobs, P. A., & Uytterhoeven, J. B. (1976). Redox behaviour of transition metal ions in zeolites. Part 2.—Kinetic study of the reduction and reoxidation of silver-Y zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 72(0), 674. doi:10.1039/f19767200674

Zhou, J., Zhang, Y., Guo, X., Zhang, A., & Fei, X. (2006). Removal of C2H4 from a CO2 Stream by Using AgNO3-Modified Y-Zeolites. Industrial & Engineering Chemistry Research, 45(18), 6236-6242. doi:10.1021/ie0605478

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem