- -

Graphene-Based Materials as Efficient Photocatalysts for Water Splitting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphene-Based Materials as Efficient Photocatalysts for Water Splitting

Mostrar el registro completo del ítem

Albero-Sancho, J.; Mateo-Mateo, D.; García Gómez, H. (2019). Graphene-Based Materials as Efficient Photocatalysts for Water Splitting. Molecules. 24(5):1-21. https://doi.org/10.3390/molecules24050906

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159515

Ficheros en el ítem

Metadatos del ítem

Título: Graphene-Based Materials as Efficient Photocatalysts for Water Splitting
Autor: Albero-Sancho, Josep Mateo-Mateo, Diego García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Photocatalysis has been proposed as one of the most promising approaches for solar fuel production. Among the photocatalysts studied for water splitting, graphene and related materials have recently emerged as attractive ...[+]
Palabras clave: Defective graphene , Photocatalysis , Solar fuels , Hydrogen generation , Facet-oriented nanoparticles
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules24050906
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/molecules24050906
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
MINECO/CTQ2015-69563-CO2-1
Agradecimientos:
This research was funded by the Spanish Ministry of Economy and Competitiveness, grant numbers SEV2016-0683 and CTQ2015-69563-CO2-1, and by Generalitat Valenciana, grant number Prometeo 2017-083.
Tipo: Artículo

References

Kamat, P. V., & Bisquert, J. (2013). Solar Fuels. Photocatalytic Hydrogen Generation. The Journal of Physical Chemistry C, 117(29), 14873-14875. doi:10.1021/jp406523w

Agrell, J., Birgersson, H., & Boutonnet, M. (2002). Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources, 106(1-2), 249-257. doi:10.1016/s0378-7753(01)01027-8

FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0 [+]
Kamat, P. V., & Bisquert, J. (2013). Solar Fuels. Photocatalytic Hydrogen Generation. The Journal of Physical Chemistry C, 117(29), 14873-14875. doi:10.1021/jp406523w

Agrell, J., Birgersson, H., & Boutonnet, M. (2002). Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources, 106(1-2), 249-257. doi:10.1016/s0378-7753(01)01027-8

FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0

Chen, S., Takata, T., & Domen, K. (2017). Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2(10). doi:10.1038/natrevmats.2017.50

García, A., Fernandez-Blanco, C., Herance, J. R., Albero, J., & García, H. (2017). Graphenes as additives in photoelectrocatalysis. Journal of Materials Chemistry A, 5(32), 16522-16536. doi:10.1039/c7ta04045h

Li, Y., Li, Y.-L., Sa, B., & Ahuja, R. (2017). Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catalysis Science & Technology, 7(3), 545-559. doi:10.1039/c6cy02178f

Xie, G., Zhang, K., Guo, B., Liu, Q., Fang, L., & Gong, J. R. (2013). Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Advanced Materials, 25(28), 3820-3839. doi:10.1002/adma.201301207

Albero, J., & Garcia, H. (2015). Doped graphenes in catalysis. Journal of Molecular Catalysis A: Chemical, 408, 296-309. doi:10.1016/j.molcata.2015.06.011

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005

Kumar, P., Boukherroub, R., & Shankar, K. (2018). Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 6(27), 12876-12931. doi:10.1039/c8ta02061b

Banhart, F., Kotakoski, J., & Krasheninnikov, A. V. (2010). Structural Defects in Graphene. ACS Nano, 5(1), 26-41. doi:10.1021/nn102598m

Zhang, W., Li, Y., Zeng, X., & Peng, S. (2015). Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Scientific Reports, 5(1). doi:10.1038/srep10589

Stefanov, B. I., Niklasson, G. A., Granqvist, C. G., & Österlund, L. (2015). Quantitative relation between photocatalytic activity and degree of 〈001〉 orientation for anatase TiO2 thin films. Journal of Materials Chemistry A, 3(33), 17369-17375. doi:10.1039/c5ta04362j

Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2014). Facet-Dependent Photocatalytic Properties of TiO2-Based Composites for Energy Conversion and Environmental Remediation. ChemSusChem, 7(3), 690-719. doi:10.1002/cssc.201300924

Warner, J. H., Schäffel, F., Bachmatiuk, A., & Rümmeli, M. H. (2013). Properties of Graphene. Graphene, 61-127. doi:10.1016/b978-0-12-394593-8.00003-5

Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., … Novoselov, K. S. (2008). Graphene-Based Liquid Crystal Device. Nano Letters, 8(6), 1704-1708. doi:10.1021/nl080649i

Montes-Navajas, P., Asenjo, N. G., Santamaría, R., Menéndez, R., Corma, A., & García, H. (2013). Surface Area Measurement of Graphene Oxide in Aqueous Solutions. Langmuir, 29(44), 13443-13448. doi:10.1021/la4029904

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Wei, D., Wu, B., Guo, Y., Yu, G., & Liu, Y. (2012). Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research, 46(1), 106-115. doi:10.1021/ar300103f

Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition, 48(42), 7752-7777. doi:10.1002/anie.200901678

Chen, L., Hernandez, Y., Feng, X., & Müllen, K. (2012). From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angewandte Chemie International Edition, 51(31), 7640-7654. doi:10.1002/anie.201201084

Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 9336-9344. doi:10.1002/anie.201003024

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Khomyakov, P. A., Giovannetti, G., Rusu, P. C., Brocks, G., van den Brink, J., & Kelly, P. J. (2009). First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B, 79(19). doi:10.1103/physrevb.79.195425

Sarkar, S., Moser, M. L., Tian, X., Zhang, X., Al-Hadeethi, Y. F., & Haddon, R. C. (2013). Metals on Graphene and Carbon Nanotube Surfaces: From Mobile Atoms to Atomtronics to Bulk Metals to Clusters and Catalysts. Chemistry of Materials, 26(1), 184-195. doi:10.1021/cm4025809

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., & Delmon, B. (1993). Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. Journal of Catalysis, 144(1), 175-192. doi:10.1006/jcat.1993.1322

Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8

Xu, C., Wang, X., & Zhu, J. (2008). Graphene−Metal Particle Nanocomposites. The Journal of Physical Chemistry C, 112(50), 19841-19845. doi:10.1021/jp807989b

Choi, Y., Bae, H. S., Seo, E., Jang, S., Park, K. H., & Kim, B.-S. (2011). Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. Journal of Materials Chemistry, 21(39), 15431. doi:10.1039/c1jm12477c

Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., & Zhang, Z. (2010). Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale, 2(12), 2733. doi:10.1039/c0nr00473a

Moussa, S., Abdelsayed, V., & Samy El-Shall, M. (2011). Laser synthesis of Pt, Pd, CoO and Pd–CoO nanoparticle catalysts supported on graphene. Chemical Physics Letters, 510(4-6), 179-184. doi:10.1016/j.cplett.2011.05.026

Burghard, M., Klauk, H., & Kern, K. (2009). Carbon-Based Field-Effect Transistors for Nanoelectronics. Advanced Materials, 21(25-26), 2586-2600. doi:10.1002/adma.200803582

Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274

Ito, J., Nakamura, J., & Natori, A. (2008). Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of Applied Physics, 103(11), 113712. doi:10.1063/1.2939270

Yeh, T.-F., Chan, F.-F., Hsieh, C.-T., & Teng, H. (2011). Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide. The Journal of Physical Chemistry C, 115(45), 22587-22597. doi:10.1021/jp204856c

Takata, T., & Domen, K. (2009). Defect Engineering of Photocatalysts by Doping of Aliovalent Metal Cations for Efficient Water Splitting. The Journal of Physical Chemistry C, 113(45), 19386-19388. doi:10.1021/jp908621e

Morikawa, T., Asahi, R., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping. Japanese Journal of Applied Physics, 40(Part 2, No. 6A), L561-L563. doi:10.1143/jjap.40.l561

Umebayashi, T., Yamaki, T., Itoh, H., & Asai, K. (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81(3), 454-456. doi:10.1063/1.1493647

Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505

Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689

Putri, L. K., Ng, B.-J., Ong, W.-J., Lee, H. W., Chang, W. S., & Chai, S.-P. (2017). Heteroatom Nitrogen- and Boron-Doping as a Facile Strategy to Improve Photocatalytic Activity of Standalone Reduced Graphene Oxide in Hydrogen Evolution. ACS Applied Materials & Interfaces, 9(5), 4558-4569. doi:10.1021/acsami.6b12060

Zhang, J., & Dai, L. (2016). Nitrogen, Phosphorus, and Fluorine Tri‐doped Graphene as a Multifunctional Catalyst for Self‐Powered Electrochemical Water Splitting. Angewandte Chemie, 128(42), 13490-13494. doi:10.1002/ange.201607405

Gliniak, J., Lin, J.-H., Chen, Y.-T., Li, C.-R., Jokar, E., Chang, C.-H., … Wu, T.-K. (2017). Sulfur-Doped Graphene Oxide Quantum Dots as Photocatalysts for Hydrogen Generation in the Aqueous Phase. ChemSusChem, 10(16), 3260-3267. doi:10.1002/cssc.201700910

Yeh, T.-F., Cihlář, J., Chang, C.-Y., Cheng, C., & Teng, H. (2013). Roles of graphene oxide in photocatalytic water splitting. Materials Today, 16(3), 78-84. doi:10.1016/j.mattod.2013.03.006

Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2(7), 1487-1491. doi:10.1021/nn800251f

Ozer, L. Y., Garlisi, C., Oladipo, H., Pagliaro, M., Sharief, S. A., Yusuf, A., … Palmisano, G. (2017). Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 33, 132-164. doi:10.1016/j.jphotochemrev.2017.06.003

Wang, W., Yu, J., Xiang, Q., & Cheng, B. (2012). Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental, 119-120, 109-116. doi:10.1016/j.apcatb.2012.02.035

Lee, J. S., You, K. H., & Park, C. B. (2012). Highly Photoactive, Low Bandgap TiO2Nanoparticles Wrapped by Graphene. Advanced Materials, 24(8), 1084-1088. doi:10.1002/adma.201104110

Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A., & Amal, R. (2011). Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 133(29), 11054-11057. doi:10.1021/ja203296z

Li, X., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Xie, J. (2016). Graphene in Photocatalysis: A Review. Small, 12(48), 6640-6696. doi:10.1002/smll.201600382

Pastrana-Martínez, L. M., Morales-Torres, S., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2018). Graphene photocatalysts. Multifunctional Photocatalytic Materials for Energy, 79-101. doi:10.1016/b978-0-08-101977-1.00006-5

Li, X., Shen, R., Ma, S., Chen, X., & Xie, J. (2018). Graphene-based heterojunction photocatalysts. Applied Surface Science, 430, 53-107. doi:10.1016/j.apsusc.2017.08.194

Oliva, J., Gomez-solis, C., Diaz-Torres, L. A., Martinez-Luevanos, A., Martinez, A. I., & Coutino-Gonzalez, E. (2018). Photocatalytic Hydrogen Evolution by Flexible Graphene Composites Decorated with Ni(OH)2 Nanoparticles. The Journal of Physical Chemistry C, 122(3), 1477-1485. doi:10.1021/acs.jpcc.7b10375

Chen, L.-C., Teng, C.-Y., Lin, C.-Y., Chang, H.-Y., Chen, S.-J., & Teng, H. (2016). Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process. Advanced Energy Materials, 6(22), 1600719. doi:10.1002/aenm.201600719

Lee, H. (2014). Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. RSC Adv., 4(77), 41017-41027. doi:10.1039/c4ra05958a

Bendavid, L. I., & Carter, E. A. (2013). First-Principles Predictions of the Structure, Stability, and Photocatalytic Potential of Cu2O Surfaces. The Journal of Physical Chemistry B, 117(49), 15750-15760. doi:10.1021/jp406454c

Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561

Esteve-Adell, I., Bakker, N., Primo, A., Hensen, E., & García, H. (2016). Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol. ACS Applied Materials & Interfaces, 8(49), 33690-33696. doi:10.1021/acsami.6b11904

Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908

Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033

Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819

Bai, J., Lu, B., Han, Q., Li, Q., & Qu, L. (2018). (111) Facets-Oriented Au-Decorated Carbon Nitride Nanoplatelets for Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Interfaces, 10(44), 38066-38072. doi:10.1021/acsami.8b13371

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem