- -

Graphene-Based Materials as Efficient Photocatalysts for Water Splitting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphene-Based Materials as Efficient Photocatalysts for Water Splitting

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author Mateo-Mateo, Diego es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-01-20T04:31:35Z
dc.date.available 2021-01-20T04:31:35Z
dc.date.issued 2019-03-01 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159515
dc.description.abstract [EN] Photocatalysis has been proposed as one of the most promising approaches for solar fuel production. Among the photocatalysts studied for water splitting, graphene and related materials have recently emerged as attractive candidates due to their striking properties and sustainable production when obtained from biomass wastes. In most of the cases reported so far, graphene has been typically used as additive to enhance its photocatalytic activity of semiconductor materials as consequence of the improved charge separation and visible light harvesting. However, graphene-based materials have demonstrated also intrinsic photocatalytic activity towards solar fuels production, and more specifically for water splitting. The photocatalytic activity of graphene derives from defects generated during synthesis or their introduction through post-synthetic treatments. In this short review, we aim to summarize the most representative examples of graphene based photocatalysts and the different approaches carried out in order to improve the photocatalytic activity towards water splitting. It will be presented that the introduction of defects in the graphenic lattice as well as the incorporation of small amounts of metal or metal oxide nanoparticles on the graphene surface improve the photocatalytic activity of graphene. What is more, a simple one-step preparation method has demonstrated to provide crystal orientation to the nanoparticles strongly grafted on graphene resulting in remarkable photocatalytic properties. These two features, crystal orientation and strong grafting, have been identified as a general methodology to further enhance the photocatalytic activity in graphenebased materials for water splitting. Finally, future prospects in this filed will be also commented. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness, grant numbers SEV2016-0683 and CTQ2015-69563-CO2-1, and by Generalitat Valenciana, grant number Prometeo 2017-083. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation MINECO/CTQ2015-69563-CO2-1 es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Defective graphene es_ES
dc.subject Photocatalysis es_ES
dc.subject Solar fuels es_ES
dc.subject Hydrogen generation es_ES
dc.subject Facet-oriented nanoparticles es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Graphene-Based Materials as Efficient Photocatalysts for Water Splitting es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules24050906 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Albero-Sancho, J.; Mateo-Mateo, D.; García Gómez, H. (2019). Graphene-Based Materials as Efficient Photocatalysts for Water Splitting. Molecules. 24(5):1-21. https://doi.org/10.3390/molecules24050906 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules24050906 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 30841539 es_ES
dc.identifier.pmcid PMC6429481 es_ES
dc.relation.pasarela S\407304 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kamat, P. V., & Bisquert, J. (2013). Solar Fuels. Photocatalytic Hydrogen Generation. The Journal of Physical Chemistry C, 117(29), 14873-14875. doi:10.1021/jp406523w es_ES
dc.description.references Agrell, J., Birgersson, H., & Boutonnet, M. (2002). Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources, 106(1-2), 249-257. doi:10.1016/s0378-7753(01)01027-8 es_ES
dc.description.references FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0 es_ES
dc.description.references Chen, S., Takata, T., & Domen, K. (2017). Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2(10). doi:10.1038/natrevmats.2017.50 es_ES
dc.description.references García, A., Fernandez-Blanco, C., Herance, J. R., Albero, J., & García, H. (2017). Graphenes as additives in photoelectrocatalysis. Journal of Materials Chemistry A, 5(32), 16522-16536. doi:10.1039/c7ta04045h es_ES
dc.description.references Li, Y., Li, Y.-L., Sa, B., & Ahuja, R. (2017). Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catalysis Science & Technology, 7(3), 545-559. doi:10.1039/c6cy02178f es_ES
dc.description.references Xie, G., Zhang, K., Guo, B., Liu, Q., Fang, L., & Gong, J. R. (2013). Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Advanced Materials, 25(28), 3820-3839. doi:10.1002/adma.201301207 es_ES
dc.description.references Albero, J., & Garcia, H. (2015). Doped graphenes in catalysis. Journal of Molecular Catalysis A: Chemical, 408, 296-309. doi:10.1016/j.molcata.2015.06.011 es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005 es_ES
dc.description.references Kumar, P., Boukherroub, R., & Shankar, K. (2018). Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 6(27), 12876-12931. doi:10.1039/c8ta02061b es_ES
dc.description.references Banhart, F., Kotakoski, J., & Krasheninnikov, A. V. (2010). Structural Defects in Graphene. ACS Nano, 5(1), 26-41. doi:10.1021/nn102598m es_ES
dc.description.references Zhang, W., Li, Y., Zeng, X., & Peng, S. (2015). Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Scientific Reports, 5(1). doi:10.1038/srep10589 es_ES
dc.description.references Stefanov, B. I., Niklasson, G. A., Granqvist, C. G., & Österlund, L. (2015). Quantitative relation between photocatalytic activity and degree of 〈001〉 orientation for anatase TiO2 thin films. Journal of Materials Chemistry A, 3(33), 17369-17375. doi:10.1039/c5ta04362j es_ES
dc.description.references Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2014). Facet-Dependent Photocatalytic Properties of TiO2-Based Composites for Energy Conversion and Environmental Remediation. ChemSusChem, 7(3), 690-719. doi:10.1002/cssc.201300924 es_ES
dc.description.references Warner, J. H., Schäffel, F., Bachmatiuk, A., & Rümmeli, M. H. (2013). Properties of Graphene. Graphene, 61-127. doi:10.1016/b978-0-12-394593-8.00003-5 es_ES
dc.description.references Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., … Novoselov, K. S. (2008). Graphene-Based Liquid Crystal Device. Nano Letters, 8(6), 1704-1708. doi:10.1021/nl080649i es_ES
dc.description.references Montes-Navajas, P., Asenjo, N. G., Santamaría, R., Menéndez, R., Corma, A., & García, H. (2013). Surface Area Measurement of Graphene Oxide in Aqueous Solutions. Langmuir, 29(44), 13443-13448. doi:10.1021/la4029904 es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347 es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Wei, D., Wu, B., Guo, Y., Yu, G., & Liu, Y. (2012). Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research, 46(1), 106-115. doi:10.1021/ar300103f es_ES
dc.description.references Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition, 48(42), 7752-7777. doi:10.1002/anie.200901678 es_ES
dc.description.references Chen, L., Hernandez, Y., Feng, X., & Müllen, K. (2012). From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angewandte Chemie International Edition, 51(31), 7640-7654. doi:10.1002/anie.201201084 es_ES
dc.description.references Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 9336-9344. doi:10.1002/anie.201003024 es_ES
dc.description.references Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Khomyakov, P. A., Giovannetti, G., Rusu, P. C., Brocks, G., van den Brink, J., & Kelly, P. J. (2009). First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B, 79(19). doi:10.1103/physrevb.79.195425 es_ES
dc.description.references Sarkar, S., Moser, M. L., Tian, X., Zhang, X., Al-Hadeethi, Y. F., & Haddon, R. C. (2013). Metals on Graphene and Carbon Nanotube Surfaces: From Mobile Atoms to Atomtronics to Bulk Metals to Clusters and Catalysts. Chemistry of Materials, 26(1), 184-195. doi:10.1021/cm4025809 es_ES
dc.description.references Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., & Delmon, B. (1993). Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. Journal of Catalysis, 144(1), 175-192. doi:10.1006/jcat.1993.1322 es_ES
dc.description.references Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 es_ES
dc.description.references Xu, C., Wang, X., & Zhu, J. (2008). Graphene−Metal Particle Nanocomposites. The Journal of Physical Chemistry C, 112(50), 19841-19845. doi:10.1021/jp807989b es_ES
dc.description.references Choi, Y., Bae, H. S., Seo, E., Jang, S., Park, K. H., & Kim, B.-S. (2011). Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. Journal of Materials Chemistry, 21(39), 15431. doi:10.1039/c1jm12477c es_ES
dc.description.references Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., & Zhang, Z. (2010). Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale, 2(12), 2733. doi:10.1039/c0nr00473a es_ES
dc.description.references Moussa, S., Abdelsayed, V., & Samy El-Shall, M. (2011). Laser synthesis of Pt, Pd, CoO and Pd–CoO nanoparticle catalysts supported on graphene. Chemical Physics Letters, 510(4-6), 179-184. doi:10.1016/j.cplett.2011.05.026 es_ES
dc.description.references Burghard, M., Klauk, H., & Kern, K. (2009). Carbon-Based Field-Effect Transistors for Nanoelectronics. Advanced Materials, 21(25-26), 2586-2600. doi:10.1002/adma.200803582 es_ES
dc.description.references Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274 es_ES
dc.description.references Ito, J., Nakamura, J., & Natori, A. (2008). Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of Applied Physics, 103(11), 113712. doi:10.1063/1.2939270 es_ES
dc.description.references Yeh, T.-F., Chan, F.-F., Hsieh, C.-T., & Teng, H. (2011). Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide. The Journal of Physical Chemistry C, 115(45), 22587-22597. doi:10.1021/jp204856c es_ES
dc.description.references Takata, T., & Domen, K. (2009). Defect Engineering of Photocatalysts by Doping of Aliovalent Metal Cations for Efficient Water Splitting. The Journal of Physical Chemistry C, 113(45), 19386-19388. doi:10.1021/jp908621e es_ES
dc.description.references Morikawa, T., Asahi, R., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping. Japanese Journal of Applied Physics, 40(Part 2, No. 6A), L561-L563. doi:10.1143/jjap.40.l561 es_ES
dc.description.references Umebayashi, T., Yamaki, T., Itoh, H., & Asai, K. (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81(3), 454-456. doi:10.1063/1.1493647 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689 es_ES
dc.description.references Putri, L. K., Ng, B.-J., Ong, W.-J., Lee, H. W., Chang, W. S., & Chai, S.-P. (2017). Heteroatom Nitrogen- and Boron-Doping as a Facile Strategy to Improve Photocatalytic Activity of Standalone Reduced Graphene Oxide in Hydrogen Evolution. ACS Applied Materials & Interfaces, 9(5), 4558-4569. doi:10.1021/acsami.6b12060 es_ES
dc.description.references Zhang, J., & Dai, L. (2016). Nitrogen, Phosphorus, and Fluorine Tri‐doped Graphene as a Multifunctional Catalyst for Self‐Powered Electrochemical Water Splitting. Angewandte Chemie, 128(42), 13490-13494. doi:10.1002/ange.201607405 es_ES
dc.description.references Gliniak, J., Lin, J.-H., Chen, Y.-T., Li, C.-R., Jokar, E., Chang, C.-H., … Wu, T.-K. (2017). Sulfur-Doped Graphene Oxide Quantum Dots as Photocatalysts for Hydrogen Generation in the Aqueous Phase. ChemSusChem, 10(16), 3260-3267. doi:10.1002/cssc.201700910 es_ES
dc.description.references Yeh, T.-F., Cihlář, J., Chang, C.-Y., Cheng, C., & Teng, H. (2013). Roles of graphene oxide in photocatalytic water splitting. Materials Today, 16(3), 78-84. doi:10.1016/j.mattod.2013.03.006 es_ES
dc.description.references Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2(7), 1487-1491. doi:10.1021/nn800251f es_ES
dc.description.references Ozer, L. Y., Garlisi, C., Oladipo, H., Pagliaro, M., Sharief, S. A., Yusuf, A., … Palmisano, G. (2017). Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 33, 132-164. doi:10.1016/j.jphotochemrev.2017.06.003 es_ES
dc.description.references Wang, W., Yu, J., Xiang, Q., & Cheng, B. (2012). Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental, 119-120, 109-116. doi:10.1016/j.apcatb.2012.02.035 es_ES
dc.description.references Lee, J. S., You, K. H., & Park, C. B. (2012). Highly Photoactive, Low Bandgap TiO2Nanoparticles Wrapped by Graphene. Advanced Materials, 24(8), 1084-1088. doi:10.1002/adma.201104110 es_ES
dc.description.references Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A., & Amal, R. (2011). Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 133(29), 11054-11057. doi:10.1021/ja203296z es_ES
dc.description.references Li, X., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Xie, J. (2016). Graphene in Photocatalysis: A Review. Small, 12(48), 6640-6696. doi:10.1002/smll.201600382 es_ES
dc.description.references Pastrana-Martínez, L. M., Morales-Torres, S., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2018). Graphene photocatalysts. Multifunctional Photocatalytic Materials for Energy, 79-101. doi:10.1016/b978-0-08-101977-1.00006-5 es_ES
dc.description.references Li, X., Shen, R., Ma, S., Chen, X., & Xie, J. (2018). Graphene-based heterojunction photocatalysts. Applied Surface Science, 430, 53-107. doi:10.1016/j.apsusc.2017.08.194 es_ES
dc.description.references Oliva, J., Gomez-solis, C., Diaz-Torres, L. A., Martinez-Luevanos, A., Martinez, A. I., & Coutino-Gonzalez, E. (2018). Photocatalytic Hydrogen Evolution by Flexible Graphene Composites Decorated with Ni(OH)2 Nanoparticles. The Journal of Physical Chemistry C, 122(3), 1477-1485. doi:10.1021/acs.jpcc.7b10375 es_ES
dc.description.references Chen, L.-C., Teng, C.-Y., Lin, C.-Y., Chang, H.-Y., Chen, S.-J., & Teng, H. (2016). Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process. Advanced Energy Materials, 6(22), 1600719. doi:10.1002/aenm.201600719 es_ES
dc.description.references Lee, H. (2014). Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. RSC Adv., 4(77), 41017-41027. doi:10.1039/c4ra05958a es_ES
dc.description.references Bendavid, L. I., & Carter, E. A. (2013). First-Principles Predictions of the Structure, Stability, and Photocatalytic Potential of Cu2O Surfaces. The Journal of Physical Chemistry B, 117(49), 15750-15760. doi:10.1021/jp406454c es_ES
dc.description.references Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 es_ES
dc.description.references Esteve-Adell, I., Bakker, N., Primo, A., Hensen, E., & García, H. (2016). Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol. ACS Applied Materials & Interfaces, 8(49), 33690-33696. doi:10.1021/acsami.6b11904 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908 es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033 es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819 es_ES
dc.description.references Bai, J., Lu, B., Han, Q., Li, Q., & Qu, L. (2018). (111) Facets-Oriented Au-Decorated Carbon Nitride Nanoplatelets for Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Interfaces, 10(44), 38066-38072. doi:10.1021/acsami.8b13371 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem