- -

Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarrete Algaba, Laura es_ES
dc.contributor.author Andrio, Andreu es_ES
dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Moya, Sergio es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-01-20T04:31:43Z
dc.date.available 2021-01-20T04:31:43Z
dc.date.issued 2019-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159518
dc.description.abstract [EN] CsH2PO4 is a proton conductor pertaining to the acid salts group and shows a phase transition from monoclinic to cubic phase at 232 +/- 2 degrees C under high-steam atmospheres (>30%). This cubic phase gives rise to the so-called superprotonic conductivity. In this work, the influence of the partial substitution of Cs by Ba and Rb, as well as the partial substitution of P by W, Mo, and S in CsH2PO4 on the phase transition temperature and electrochemical properties is studied. Among the tested materials, the partial substitution by Rb led to the highest conductivity at high temperature. Furthermore, Ba and S-substituted salts exhibited the highest conductivity at low temperatures. CsH2PO4 was used as electrolyte in a fully-assembled fuel cell demonstrating the applicability of the material at high pressures and the possibility to use other materials (Cu and ZnO) instead of Pt as electrode electrocatalyst. Finally, an electrolyzer cell composed of CsH2PO4 as electrolyte, Cu and ZnO as cathode and Pt and Ag as anode was evaluated, obtaining a stable production of H-2 at 250 degrees C. es_ES
dc.description.sponsorship Funding from Spanish Government (SEV-2016-0683, ENE2014-57651 and Juan de la Cierva-Incorporacion 2016 Grants) is kindly acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Membranes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cesium dihydrogen phosphate es_ES
dc.subject Proton conductor es_ES
dc.subject Composite solid electrolyte es_ES
dc.subject Conductivity es_ES
dc.subject Fuel cell es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/membranes9040049 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Navarrete Algaba, L.; Andrio, A.; Escolástico Rozalén, S.; Moya, S.; Compañ Moreno, V.; Serra Alfaro, JM. (2019). Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices. Membranes. 9(4):1-11. https://doi.org/10.3390/membranes9040049 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/membranes9040049 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2077-0375 es_ES
dc.identifier.pmid 30970627 es_ES
dc.identifier.pmcid PMC6523917 es_ES
dc.relation.pasarela S\402557 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Kreuer, K. D. (2001). On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 185(1), 29-39. doi:10.1016/s0376-7388(00)00632-3 es_ES
dc.description.references Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76(3), 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x es_ES
dc.description.references Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349-9384. doi:10.1016/j.ijhydene.2010.05.017 es_ES
dc.description.references Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274 es_ES
dc.description.references Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536 es_ES
dc.description.references Mohammad, N., Mohamad, A. B., Kadhum, A. A. H., & Loh, K. S. (2016). A review on synthesis and characterization of solid acid materials for fuel cell applications. Journal of Power Sources, 322, 77-92. doi:10.1016/j.jpowsour.2016.05.021 es_ES
dc.description.references Louie, M. W., Kislitsyn, M., Bhattacharya, K., & Haile, S. M. (2010). Phase transformation and hysteresis behavior in Cs1−xRbxH2PO4. Solid State Ionics, 181(3-4), 173-179. doi:10.1016/j.ssi.2008.11.014 es_ES
dc.description.references Taninouchi, Y., Uda, T., Awakura, Y., Ikeda, A., & Haile, S. M. (2007). Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. Journal of Materials Chemistry, 17(30), 3182. doi:10.1039/b704558c es_ES
dc.description.references Taninouchi, Y., Uda, T., & Awakura, Y. (2008). Dehydration of CsH2PO4 at temperatures higher than 260 °C and the ionic conductivity of liquid product. Solid State Ionics, 178(31-32), 1648-1653. doi:10.1016/j.ssi.2007.10.017 es_ES
dc.description.references Ponomareva, V. G., & Bagryantseva, I. N. (2012). Superprotonic CsH2PO4-CsHSO4 solid solutions. Inorganic Materials, 48(2), 187-194. doi:10.1134/s0020168512010128 es_ES
dc.description.references Uda, T., Boysen, D. A., Chisholm, C. R. I., & Haile, S. M. (2006). Alcohol Fuel Cells at Optimal Temperatures. Electrochemical and Solid-State Letters, 9(6), A261. doi:10.1149/1.2188069 es_ES
dc.description.references Bartley, G. J. J., & Burch, R. (1988). Support and morphological effects in the synthesis of methanol over Cu/ZnO, Cu/ZrO2 and Cu/SiO2 catalysts. Applied Catalysis, 43(1), 141-153. doi:10.1016/s0166-9834(00)80907-0 es_ES
dc.description.references Bansode, A., Tidona, B., von Rohr, P. R., & Urakawa, A. (2013). Impact of K and Ba promoters on CO2hydrogenation over Cu/Al2O3catalysts at high pressure. Catal. Sci. Technol., 3(3), 767-778. doi:10.1039/c2cy20604h es_ES
dc.description.references Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 es_ES
dc.description.references Chisholm, C. R. ., & Haile, S. M. (2000). X-ray structure refinement of CsHSO4 in phase II. Materials Research Bulletin, 35(7), 999-1005. doi:10.1016/s0025-5408(00)00301-9 es_ES
dc.description.references Ricote, S., Bonanos, N., Wang, H. J., & Boukamp, B. A. (2012). Conductivity study of dense BaZr0.9Y0.1O(3−δ) obtained by spark plasma sintering. Solid State Ionics, 213, 36-41. doi:10.1016/j.ssi.2011.02.011 es_ES
dc.description.references Ikeda, A., Kitchaev, D. A., & Haile, S. M. (2014). Phase behavior and superprotonic conductivity in the Cs1−xRbxH2PO4and Cs1−xKxH2PO4systems. J. Mater. Chem. A, 2(1), 204-214. doi:10.1039/c3ta13889e es_ES
dc.description.references Lee, H.-S., & Tuckerman, M. E. (2008). The Structure and Proton Transport Mechanisms in the Superprotonic Phase of CsH2PO4: An Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C, 112(26), 9917-9930. doi:10.1021/jp800342y es_ES
dc.description.references Bronowska, W. (2001). Comment on «Does the structural superionic phase transition at 231 °C in CsH[sub 2]PO[sub 4] really not exist?» [J. Chem. Phys. 110, 4847 (1999)]. The Journal of Chemical Physics, 114(1), 611. doi:10.1063/1.1328043 es_ES
dc.description.references Romain, F., & Novak, A. (1991). Raman study of the high-temperature phase transition in CsH2PO4. Journal of Molecular Structure, 263, 69-74. doi:10.1016/0022-2860(91)80056-a es_ES
dc.description.references Papandrew, A. B., Chisholm, C. R. I., Elgammal, R. A., Özer, M. M., & Zecevic, S. K. (2011). Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4. Chemistry of Materials, 23(7), 1659-1667. doi:10.1021/cm101147y es_ES
dc.description.references Boysen, D. A., Uda, T., Chisholm, C. R. I., & Haile, S. M. (2004). High-Performance Solid Acid Fuel Cells Through Humidity Stabilization. Science, 303(5654), 68-70. doi:10.1126/science.1090920 es_ES
dc.description.references Yoshimi, S., Matsui, T., Kikuchi, R., & Eguchi, K. (2008). Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes. Journal of Power Sources, 179(2), 497-503. doi:10.1016/j.jpowsour.2008.01.003 es_ES
dc.description.references Schiffer, Z. J., & Manthiram, K. (2017). Electrification and Decarbonization of the Chemical Industry. Joule, 1(1), 10-14. doi:10.1016/j.joule.2017.07.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem