Mostrar el registro sencillo del ítem
dc.contributor.author | Navarrete Algaba, Laura | es_ES |
dc.contributor.author | Andrio, Andreu | es_ES |
dc.contributor.author | Escolástico Rozalén, Sonia | es_ES |
dc.contributor.author | Moya, Sergio | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2021-01-20T04:31:43Z | |
dc.date.available | 2021-01-20T04:31:43Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159518 | |
dc.description.abstract | [EN] CsH2PO4 is a proton conductor pertaining to the acid salts group and shows a phase transition from monoclinic to cubic phase at 232 +/- 2 degrees C under high-steam atmospheres (>30%). This cubic phase gives rise to the so-called superprotonic conductivity. In this work, the influence of the partial substitution of Cs by Ba and Rb, as well as the partial substitution of P by W, Mo, and S in CsH2PO4 on the phase transition temperature and electrochemical properties is studied. Among the tested materials, the partial substitution by Rb led to the highest conductivity at high temperature. Furthermore, Ba and S-substituted salts exhibited the highest conductivity at low temperatures. CsH2PO4 was used as electrolyte in a fully-assembled fuel cell demonstrating the applicability of the material at high pressures and the possibility to use other materials (Cu and ZnO) instead of Pt as electrode electrocatalyst. Finally, an electrolyzer cell composed of CsH2PO4 as electrolyte, Cu and ZnO as cathode and Pt and Ag as anode was evaluated, obtaining a stable production of H-2 at 250 degrees C. | es_ES |
dc.description.sponsorship | Funding from Spanish Government (SEV-2016-0683, ENE2014-57651 and Juan de la Cierva-Incorporacion 2016 Grants) is kindly acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Membranes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cesium dihydrogen phosphate | es_ES |
dc.subject | Proton conductor | es_ES |
dc.subject | Composite solid electrolyte | es_ES |
dc.subject | Conductivity | es_ES |
dc.subject | Fuel cell | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/membranes9040049 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Navarrete Algaba, L.; Andrio, A.; Escolástico Rozalén, S.; Moya, S.; Compañ Moreno, V.; Serra Alfaro, JM. (2019). Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices. Membranes. 9(4):1-11. https://doi.org/10.3390/membranes9040049 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/membranes9040049 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2077-0375 | es_ES |
dc.identifier.pmid | 30970627 | es_ES |
dc.identifier.pmcid | PMC6523917 | es_ES |
dc.relation.pasarela | S\402557 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Kreuer, K. D. (2001). On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 185(1), 29-39. doi:10.1016/s0376-7388(00)00632-3 | es_ES |
dc.description.references | Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76(3), 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x | es_ES |
dc.description.references | Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349-9384. doi:10.1016/j.ijhydene.2010.05.017 | es_ES |
dc.description.references | Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274 | es_ES |
dc.description.references | Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536 | es_ES |
dc.description.references | Mohammad, N., Mohamad, A. B., Kadhum, A. A. H., & Loh, K. S. (2016). A review on synthesis and characterization of solid acid materials for fuel cell applications. Journal of Power Sources, 322, 77-92. doi:10.1016/j.jpowsour.2016.05.021 | es_ES |
dc.description.references | Louie, M. W., Kislitsyn, M., Bhattacharya, K., & Haile, S. M. (2010). Phase transformation and hysteresis behavior in Cs1−xRbxH2PO4. Solid State Ionics, 181(3-4), 173-179. doi:10.1016/j.ssi.2008.11.014 | es_ES |
dc.description.references | Taninouchi, Y., Uda, T., Awakura, Y., Ikeda, A., & Haile, S. M. (2007). Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. Journal of Materials Chemistry, 17(30), 3182. doi:10.1039/b704558c | es_ES |
dc.description.references | Taninouchi, Y., Uda, T., & Awakura, Y. (2008). Dehydration of CsH2PO4 at temperatures higher than 260 °C and the ionic conductivity of liquid product. Solid State Ionics, 178(31-32), 1648-1653. doi:10.1016/j.ssi.2007.10.017 | es_ES |
dc.description.references | Ponomareva, V. G., & Bagryantseva, I. N. (2012). Superprotonic CsH2PO4-CsHSO4 solid solutions. Inorganic Materials, 48(2), 187-194. doi:10.1134/s0020168512010128 | es_ES |
dc.description.references | Uda, T., Boysen, D. A., Chisholm, C. R. I., & Haile, S. M. (2006). Alcohol Fuel Cells at Optimal Temperatures. Electrochemical and Solid-State Letters, 9(6), A261. doi:10.1149/1.2188069 | es_ES |
dc.description.references | Bartley, G. J. J., & Burch, R. (1988). Support and morphological effects in the synthesis of methanol over Cu/ZnO, Cu/ZrO2 and Cu/SiO2 catalysts. Applied Catalysis, 43(1), 141-153. doi:10.1016/s0166-9834(00)80907-0 | es_ES |
dc.description.references | Bansode, A., Tidona, B., von Rohr, P. R., & Urakawa, A. (2013). Impact of K and Ba promoters on CO2hydrogenation over Cu/Al2O3catalysts at high pressure. Catal. Sci. Technol., 3(3), 767-778. doi:10.1039/c2cy20604h | es_ES |
dc.description.references | Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 | es_ES |
dc.description.references | Chisholm, C. R. ., & Haile, S. M. (2000). X-ray structure refinement of CsHSO4 in phase II. Materials Research Bulletin, 35(7), 999-1005. doi:10.1016/s0025-5408(00)00301-9 | es_ES |
dc.description.references | Ricote, S., Bonanos, N., Wang, H. J., & Boukamp, B. A. (2012). Conductivity study of dense BaZr0.9Y0.1O(3−δ) obtained by spark plasma sintering. Solid State Ionics, 213, 36-41. doi:10.1016/j.ssi.2011.02.011 | es_ES |
dc.description.references | Ikeda, A., Kitchaev, D. A., & Haile, S. M. (2014). Phase behavior and superprotonic conductivity in the Cs1−xRbxH2PO4and Cs1−xKxH2PO4systems. J. Mater. Chem. A, 2(1), 204-214. doi:10.1039/c3ta13889e | es_ES |
dc.description.references | Lee, H.-S., & Tuckerman, M. E. (2008). The Structure and Proton Transport Mechanisms in the Superprotonic Phase of CsH2PO4: An Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C, 112(26), 9917-9930. doi:10.1021/jp800342y | es_ES |
dc.description.references | Bronowska, W. (2001). Comment on «Does the structural superionic phase transition at 231 °C in CsH[sub 2]PO[sub 4] really not exist?» [J. Chem. Phys. 110, 4847 (1999)]. The Journal of Chemical Physics, 114(1), 611. doi:10.1063/1.1328043 | es_ES |
dc.description.references | Romain, F., & Novak, A. (1991). Raman study of the high-temperature phase transition in CsH2PO4. Journal of Molecular Structure, 263, 69-74. doi:10.1016/0022-2860(91)80056-a | es_ES |
dc.description.references | Papandrew, A. B., Chisholm, C. R. I., Elgammal, R. A., Özer, M. M., & Zecevic, S. K. (2011). Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4. Chemistry of Materials, 23(7), 1659-1667. doi:10.1021/cm101147y | es_ES |
dc.description.references | Boysen, D. A., Uda, T., Chisholm, C. R. I., & Haile, S. M. (2004). High-Performance Solid Acid Fuel Cells Through Humidity Stabilization. Science, 303(5654), 68-70. doi:10.1126/science.1090920 | es_ES |
dc.description.references | Yoshimi, S., Matsui, T., Kikuchi, R., & Eguchi, K. (2008). Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes. Journal of Power Sources, 179(2), 497-503. doi:10.1016/j.jpowsour.2008.01.003 | es_ES |
dc.description.references | Schiffer, Z. J., & Manthiram, K. (2017). Electrification and Decarbonization of the Chemical Industry. Joule, 1(1), 10-14. doi:10.1016/j.joule.2017.07.008 | es_ES |