- -

Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices

Mostrar el registro completo del ítem

Navarrete Algaba, L.; Andrio, A.; Escolástico Rozalén, S.; Moya, S.; Compañ Moreno, V.; Serra Alfaro, JM. (2019). Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices. Membranes. 9(4):1-11. https://doi.org/10.3390/membranes9040049

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159518

Ficheros en el ítem

Metadatos del ítem

Título: Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices
Autor: Navarrete Algaba, Laura Andrio, Andreu Escolástico Rozalén, Sonia Moya, Sergio Compañ Moreno, Vicente Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] CsH2PO4 is a proton conductor pertaining to the acid salts group and shows a phase transition from monoclinic to cubic phase at 232 +/- 2 degrees C under high-steam atmospheres (>30%). This cubic phase gives rise to ...[+]
Palabras clave: Cesium dihydrogen phosphate , Proton conductor , Composite solid electrolyte , Conductivity , Fuel cell
Derechos de uso: Reconocimiento (by)
Fuente:
Membranes. (eissn: 2077-0375 )
DOI: 10.3390/membranes9040049
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/membranes9040049
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
Funding from Spanish Government (SEV-2016-0683, ENE2014-57651 and Juan de la Cierva-Incorporacion 2016 Grants) is kindly acknowledged.
Tipo: Artículo

References

Kreuer, K. D. (2001). On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 185(1), 29-39. doi:10.1016/s0376-7388(00)00632-3

Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76(3), 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x

Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349-9384. doi:10.1016/j.ijhydene.2010.05.017 [+]
Kreuer, K. D. (2001). On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 185(1), 29-39. doi:10.1016/s0376-7388(00)00632-3

Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76(3), 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x

Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349-9384. doi:10.1016/j.ijhydene.2010.05.017

Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274

Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536

Mohammad, N., Mohamad, A. B., Kadhum, A. A. H., & Loh, K. S. (2016). A review on synthesis and characterization of solid acid materials for fuel cell applications. Journal of Power Sources, 322, 77-92. doi:10.1016/j.jpowsour.2016.05.021

Louie, M. W., Kislitsyn, M., Bhattacharya, K., & Haile, S. M. (2010). Phase transformation and hysteresis behavior in Cs1−xRbxH2PO4. Solid State Ionics, 181(3-4), 173-179. doi:10.1016/j.ssi.2008.11.014

Taninouchi, Y., Uda, T., Awakura, Y., Ikeda, A., & Haile, S. M. (2007). Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. Journal of Materials Chemistry, 17(30), 3182. doi:10.1039/b704558c

Taninouchi, Y., Uda, T., & Awakura, Y. (2008). Dehydration of CsH2PO4 at temperatures higher than 260 °C and the ionic conductivity of liquid product. Solid State Ionics, 178(31-32), 1648-1653. doi:10.1016/j.ssi.2007.10.017

Ponomareva, V. G., & Bagryantseva, I. N. (2012). Superprotonic CsH2PO4-CsHSO4 solid solutions. Inorganic Materials, 48(2), 187-194. doi:10.1134/s0020168512010128

Uda, T., Boysen, D. A., Chisholm, C. R. I., & Haile, S. M. (2006). Alcohol Fuel Cells at Optimal Temperatures. Electrochemical and Solid-State Letters, 9(6), A261. doi:10.1149/1.2188069

Bartley, G. J. J., & Burch, R. (1988). Support and morphological effects in the synthesis of methanol over Cu/ZnO, Cu/ZrO2 and Cu/SiO2 catalysts. Applied Catalysis, 43(1), 141-153. doi:10.1016/s0166-9834(00)80907-0

Bansode, A., Tidona, B., von Rohr, P. R., & Urakawa, A. (2013). Impact of K and Ba promoters on CO2hydrogenation over Cu/Al2O3catalysts at high pressure. Catal. Sci. Technol., 3(3), 767-778. doi:10.1039/c2cy20604h

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551

Chisholm, C. R. ., & Haile, S. M. (2000). X-ray structure refinement of CsHSO4 in phase II. Materials Research Bulletin, 35(7), 999-1005. doi:10.1016/s0025-5408(00)00301-9

Ricote, S., Bonanos, N., Wang, H. J., & Boukamp, B. A. (2012). Conductivity study of dense BaZr0.9Y0.1O(3−δ) obtained by spark plasma sintering. Solid State Ionics, 213, 36-41. doi:10.1016/j.ssi.2011.02.011

Ikeda, A., Kitchaev, D. A., & Haile, S. M. (2014). Phase behavior and superprotonic conductivity in the Cs1−xRbxH2PO4and Cs1−xKxH2PO4systems. J. Mater. Chem. A, 2(1), 204-214. doi:10.1039/c3ta13889e

Lee, H.-S., & Tuckerman, M. E. (2008). The Structure and Proton Transport Mechanisms in the Superprotonic Phase of CsH2PO4: An Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C, 112(26), 9917-9930. doi:10.1021/jp800342y

Bronowska, W. (2001). Comment on «Does the structural superionic phase transition at 231 °C in CsH[sub 2]PO[sub 4] really not exist?» [J. Chem. Phys. 110, 4847 (1999)]. The Journal of Chemical Physics, 114(1), 611. doi:10.1063/1.1328043

Romain, F., & Novak, A. (1991). Raman study of the high-temperature phase transition in CsH2PO4. Journal of Molecular Structure, 263, 69-74. doi:10.1016/0022-2860(91)80056-a

Papandrew, A. B., Chisholm, C. R. I., Elgammal, R. A., Özer, M. M., & Zecevic, S. K. (2011). Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4. Chemistry of Materials, 23(7), 1659-1667. doi:10.1021/cm101147y

Boysen, D. A., Uda, T., Chisholm, C. R. I., & Haile, S. M. (2004). High-Performance Solid Acid Fuel Cells Through Humidity Stabilization. Science, 303(5654), 68-70. doi:10.1126/science.1090920

Yoshimi, S., Matsui, T., Kikuchi, R., & Eguchi, K. (2008). Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes. Journal of Power Sources, 179(2), 497-503. doi:10.1016/j.jpowsour.2008.01.003

Schiffer, Z. J., & Manthiram, K. (2017). Electrification and Decarbonization of the Chemical Industry. Joule, 1(1), 10-14. doi:10.1016/j.joule.2017.07.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem