- -

Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Weigelt, Fynn es_ES
dc.contributor.author Escorihuela-Roca, Sara es_ES
dc.contributor.author Descalzo, Alberto es_ES
dc.contributor.author Tena, Alberto es_ES
dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Shishatskiy, Sergey es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.contributor.author Brinkmann, Torsten es_ES
dc.date.accessioned 2021-01-20T04:32:08Z
dc.date.available 2021-01-20T04:32:08Z
dc.date.issued 2019-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159528
dc.description.abstract [EN] Novel selective polymeric thin-film composite membranes (TFCMs) for applications at elevated temperatures were developed. Thin selective layers of the polyimides Matrimid 5218((R)) and 6FDA-6FpDA were cast on a developed polybenzimidazole (PBI) porous support prepared by a phase inversion process. The TFCM properties were investigated with different gases in a wide temperature range, including temperatures up to 270 degrees C. The membranes showed very high thermal stability and performed well at the elevated temperatures. The development of highly thermally resistant polymeric membranes such as these TFCMs opens opportunities for application in high-temperature integrated processes, such as catalytic membrane reactors for the water-gas shift reaction in order to maximize H-2 yield. es_ES
dc.description.sponsorship This work was financially supported by the project "New reactor technologies for chemical and biochemical synthesis processes" ("Neue Reaktortechnologien fur Chemische und Biochemische Syntheseverfahren", FKZ: LFF FV 43), funded by the City of Hamburg (Freie und Hansestadt Hamburg, Behorde furWissenschaft, Forschung und Gleichstellung), Germany, the Spanish Government (SEV-2016-0683, SVP-2014-068356, Project ENE2014-57651-R and IJCI-2016-28330 grants), and Generalitat Valenciana (PROMETEO/2018/006 grant). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Membranes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Thin-film composite membranes es_ES
dc.subject High-temperature applications es_ES
dc.subject High thermal stability es_ES
dc.subject Hydrogen es_ES
dc.subject Carbon dioxide es_ES
dc.title Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/membranes9040051 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2014-068356/ES/SVP-2014-068356/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-28330/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BWFGB//LFF FV 43/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Weigelt, F.; Escorihuela-Roca, S.; Descalzo, A.; Tena, A.; Escolástico Rozalén, S.; Shishatskiy, S.; Serra Alfaro, JM.... (2019). Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations. Membranes. 9(4):1-12. https://doi.org/10.3390/membranes9040051 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/membranes9040051 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2077-0375 es_ES
dc.identifier.pmid 30974909 es_ES
dc.identifier.pmcid PMC6523132 es_ES
dc.relation.pasarela S\403674 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Behörde für Wissenschaft, Forschung, Gleichstellung und Bezirke, Alemania es_ES
dc.description.references Schuldt, K., Pohlmann, J., Shishatskiy, S., & Brinkmann, T. (2018). Applicability of PolyActive™ Thin Film Composite Membranes for CO2 Separation from C2H4 Containing Multi-Component Gas Mixtures at Pressures up to 30 Bar. Membranes, 8(2), 27. doi:10.3390/membranes8020027 es_ES
dc.description.references Brinkmann, T., Lillepärg, J., Notzke, H., Pohlmann, J., Shishatskiy, S., Wind, J., & Wolff, T. (2017). Development of CO 2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale. Engineering, 3(4), 485-493. doi:10.1016/j.eng.2017.04.004 es_ES
dc.description.references Peter, J., & Peinemann, K.-V. (2009). Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid® 5218 selective layer. Journal of Membrane Science, 340(1-2), 62-72. doi:10.1016/j.memsci.2009.05.009 es_ES
dc.description.references Shishatskiy, S., Nistor, C., Popa, M., Nunes, S. P., & Peinemann, K. V. (2006). Polyimide Asymmetric Membranes for Hydrogen Separation: Influence of Formation Conditions on Gas Transport Properties. Advanced Engineering Materials, 8(5), 390-397. doi:10.1002/adem.200600024 es_ES
dc.description.references Bai, J., Founda, A. E., Matsuura, T., & Hazlett, J. D. (1993). A study on the preparation and performance of polydimethylsiloxane-coated polyetherimide membranes in pervaporation. Journal of Applied Polymer Science, 48(6), 999-1008. doi:10.1002/app.1993.070480607 es_ES
dc.description.references Grünauer, J., Filiz, V., Shishatskiy, S., Abetz, C., & Abetz, V. (2016). Scalable application of thin film coating techniques for supported liquid membranes for gas separation made from ionic liquids. Journal of Membrane Science, 518, 178-191. doi:10.1016/j.memsci.2016.07.005 es_ES
dc.description.references Escorihuela, S., Tena, A., Shishatskiy, S., Escolástico, S., Brinkmann, T., Serra, J., & Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes, 8(1), 16. doi:10.3390/membranes8010016 es_ES
dc.description.references Lu, G. Q., Diniz da Costa, J. C., Duke, M., Giessler, S., Socolow, R., Williams, R. H., & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 314(2), 589-603. doi:10.1016/j.jcis.2007.05.067 es_ES
dc.description.references David, O. C., Gorri, D., Urtiaga, A., & Ortiz, I. (2011). Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane. Journal of Membrane Science, 378(1-2), 359-368. doi:10.1016/j.memsci.2011.05.029 es_ES
dc.description.references Koros, W. J., & Fleming, G. K. (1993). Membrane-based gas separation. Journal of Membrane Science, 83(1), 1-80. doi:10.1016/0376-7388(93)80013-n es_ES
dc.description.references Liaw, D.-J., Wang, K.-L., Huang, Y.-C., Lee, K.-R., Lai, J.-Y., & Ha, C.-S. (2012). Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 37(7), 907-974. doi:10.1016/j.progpolymsci.2012.02.005 es_ES
dc.description.references Weigelt, F., Georgopanos, P., Shishatskiy, S., Filiz, V., Brinkmann, T., & Abetz, V. (2018). Development and Characterization of Defect-Free Matrimid® Mixed-Matrix Membranes Containing Activated Carbon Particles for Gas Separation. Polymers, 10(1), 51. doi:10.3390/polym10010051 es_ES
dc.description.references Barrer, R. M., & Rideal, E. K. (1939). Permeation, diffusion and solution of gases in organic polymers. Transactions of the Faraday Society, 35, 628. doi:10.1039/tf9393500628 es_ES
dc.description.references Bains, P., Psarras, P., & Wilcox, J. (2017). CO 2 capture from the industry sector. Progress in Energy and Combustion Science, 63, 146-172. doi:10.1016/j.pecs.2017.07.001 es_ES
dc.description.references Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4 es_ES
dc.description.references Rezakazemi, M., Sadrzadeh, M., & Matsuura, T. (2018). Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science, 66, 1-41. doi:10.1016/j.pecs.2017.11.002 es_ES
dc.description.references Pesiri, D. R., Jorgensen, B., & Dye, R. C. (2003). Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. Journal of Membrane Science, 218(1-2), 11-18. doi:10.1016/s0376-7388(03)00129-7 es_ES
dc.description.references Kumbharkar, S. C., Liu, Y., & Li, K. (2011). High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 375(1-2), 231-240. doi:10.1016/j.memsci.2011.03.049 es_ES
dc.description.references Muñoz, D. M., de la Campa, J. G., de Abajo, J., & Lozano, A. E. (2007). Experimental and Theoretical Study of an Improved Activated Polycondensation Method for Aromatic Polyimides. Macromolecules, 40(23), 8225-8232. doi:10.1021/ma070842j es_ES
dc.description.references Herdegen, V., Werner, A., Milew, K., Haseneder, R., & Aubel, T. (2018). ACHEMA 2018: Membranen und Membranverfahren. Chemie Ingenieur Technik, 90(12), 1964-1971. doi:10.1002/cite.201800157 es_ES
dc.description.references WANG, K., & CHUNG, T. (2006). Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate. Journal of Membrane Science, 281(1-2), 307-315. doi:10.1016/j.memsci.2006.03.045 es_ES
dc.description.references Ansaloni, L., Minelli, M., Giacinti Baschetti, M., & Sarti, G. C. (2014). Effects of Thermal Treatment and Physical Aging on the Gas Transport Properties in Matrimid®. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 70(2), 367-379. doi:10.2516/ogst/2013188 es_ES
dc.description.references Pye, D. G., Hoehn, H. H., & Panar, M. (1976). Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus. Journal of Applied Polymer Science, 20(7), 1921-1931. doi:10.1002/app.1976.070200719 es_ES
dc.description.references Tena, A., Shishatskiy, S., Meis, D., Wind, J., Filiz, V., & Abetz, V. (2017). Influence of the Composition and Imidization Route on the Chain Packing and Gas Separation Properties of Fluorinated Copolyimides. Macromolecules, 50(15), 5839-5849. doi:10.1021/acs.macromol.7b01051 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem