- -

Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations

Mostrar el registro completo del ítem

Weigelt, F.; Escorihuela-Roca, S.; Descalzo, A.; Tena, A.; Escolástico Rozalén, S.; Shishatskiy, S.; Serra Alfaro, JM.... (2019). Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations. Membranes. 9(4):1-12. https://doi.org/10.3390/membranes9040051

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159528

Ficheros en el ítem

Metadatos del ítem

Título: Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations
Autor: Weigelt, Fynn Escorihuela-Roca, Sara Descalzo, Alberto Tena, Alberto Escolástico Rozalén, Sonia Shishatskiy, Sergey Serra Alfaro, José Manuel Brinkmann, Torsten
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Novel selective polymeric thin-film composite membranes (TFCMs) for applications at elevated temperatures were developed. Thin selective layers of the polyimides Matrimid 5218((R)) and 6FDA-6FpDA were cast on a developed ...[+]
Palabras clave: Thin-film composite membranes , High-temperature applications , High thermal stability , Hydrogen , Carbon dioxide
Derechos de uso: Reconocimiento (by)
Fuente:
Membranes. (eissn: 2077-0375 )
DOI: 10.3390/membranes9040051
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/membranes9040051
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SVP-2014-068356/ES/SVP-2014-068356/
...[+]
info:eu-repo/grantAgreement/MINECO//SVP-2014-068356/ES/SVP-2014-068356/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-28330/
info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/
info:eu-repo/grantAgreement/BWFGB//LFF FV 43/
[-]
Agradecimientos:
This work was financially supported by the project "New reactor technologies for chemical and biochemical synthesis processes" ("Neue Reaktortechnologien fur Chemische und Biochemische Syntheseverfahren", FKZ: LFF FV 43), ...[+]
Tipo: Artículo

References

Schuldt, K., Pohlmann, J., Shishatskiy, S., & Brinkmann, T. (2018). Applicability of PolyActive™ Thin Film Composite Membranes for CO2 Separation from C2H4 Containing Multi-Component Gas Mixtures at Pressures up to 30 Bar. Membranes, 8(2), 27. doi:10.3390/membranes8020027

Brinkmann, T., Lillepärg, J., Notzke, H., Pohlmann, J., Shishatskiy, S., Wind, J., & Wolff, T. (2017). Development of CO 2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale. Engineering, 3(4), 485-493. doi:10.1016/j.eng.2017.04.004

Peter, J., & Peinemann, K.-V. (2009). Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid® 5218 selective layer. Journal of Membrane Science, 340(1-2), 62-72. doi:10.1016/j.memsci.2009.05.009 [+]
Schuldt, K., Pohlmann, J., Shishatskiy, S., & Brinkmann, T. (2018). Applicability of PolyActive™ Thin Film Composite Membranes for CO2 Separation from C2H4 Containing Multi-Component Gas Mixtures at Pressures up to 30 Bar. Membranes, 8(2), 27. doi:10.3390/membranes8020027

Brinkmann, T., Lillepärg, J., Notzke, H., Pohlmann, J., Shishatskiy, S., Wind, J., & Wolff, T. (2017). Development of CO 2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale. Engineering, 3(4), 485-493. doi:10.1016/j.eng.2017.04.004

Peter, J., & Peinemann, K.-V. (2009). Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid® 5218 selective layer. Journal of Membrane Science, 340(1-2), 62-72. doi:10.1016/j.memsci.2009.05.009

Shishatskiy, S., Nistor, C., Popa, M., Nunes, S. P., & Peinemann, K. V. (2006). Polyimide Asymmetric Membranes for Hydrogen Separation: Influence of Formation Conditions on Gas Transport Properties. Advanced Engineering Materials, 8(5), 390-397. doi:10.1002/adem.200600024

Bai, J., Founda, A. E., Matsuura, T., & Hazlett, J. D. (1993). A study on the preparation and performance of polydimethylsiloxane-coated polyetherimide membranes in pervaporation. Journal of Applied Polymer Science, 48(6), 999-1008. doi:10.1002/app.1993.070480607

Grünauer, J., Filiz, V., Shishatskiy, S., Abetz, C., & Abetz, V. (2016). Scalable application of thin film coating techniques for supported liquid membranes for gas separation made from ionic liquids. Journal of Membrane Science, 518, 178-191. doi:10.1016/j.memsci.2016.07.005

Escorihuela, S., Tena, A., Shishatskiy, S., Escolástico, S., Brinkmann, T., Serra, J., & Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes, 8(1), 16. doi:10.3390/membranes8010016

Lu, G. Q., Diniz da Costa, J. C., Duke, M., Giessler, S., Socolow, R., Williams, R. H., & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 314(2), 589-603. doi:10.1016/j.jcis.2007.05.067

David, O. C., Gorri, D., Urtiaga, A., & Ortiz, I. (2011). Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane. Journal of Membrane Science, 378(1-2), 359-368. doi:10.1016/j.memsci.2011.05.029

Koros, W. J., & Fleming, G. K. (1993). Membrane-based gas separation. Journal of Membrane Science, 83(1), 1-80. doi:10.1016/0376-7388(93)80013-n

Liaw, D.-J., Wang, K.-L., Huang, Y.-C., Lee, K.-R., Lai, J.-Y., & Ha, C.-S. (2012). Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 37(7), 907-974. doi:10.1016/j.progpolymsci.2012.02.005

Weigelt, F., Georgopanos, P., Shishatskiy, S., Filiz, V., Brinkmann, T., & Abetz, V. (2018). Development and Characterization of Defect-Free Matrimid® Mixed-Matrix Membranes Containing Activated Carbon Particles for Gas Separation. Polymers, 10(1), 51. doi:10.3390/polym10010051

Barrer, R. M., & Rideal, E. K. (1939). Permeation, diffusion and solution of gases in organic polymers. Transactions of the Faraday Society, 35, 628. doi:10.1039/tf9393500628

Bains, P., Psarras, P., & Wilcox, J. (2017). CO 2 capture from the industry sector. Progress in Energy and Combustion Science, 63, 146-172. doi:10.1016/j.pecs.2017.07.001

Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4

Rezakazemi, M., Sadrzadeh, M., & Matsuura, T. (2018). Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science, 66, 1-41. doi:10.1016/j.pecs.2017.11.002

Pesiri, D. R., Jorgensen, B., & Dye, R. C. (2003). Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. Journal of Membrane Science, 218(1-2), 11-18. doi:10.1016/s0376-7388(03)00129-7

Kumbharkar, S. C., Liu, Y., & Li, K. (2011). High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 375(1-2), 231-240. doi:10.1016/j.memsci.2011.03.049

Muñoz, D. M., de la Campa, J. G., de Abajo, J., & Lozano, A. E. (2007). Experimental and Theoretical Study of an Improved Activated Polycondensation Method for Aromatic Polyimides. Macromolecules, 40(23), 8225-8232. doi:10.1021/ma070842j

Herdegen, V., Werner, A., Milew, K., Haseneder, R., & Aubel, T. (2018). ACHEMA 2018: Membranen und Membranverfahren. Chemie Ingenieur Technik, 90(12), 1964-1971. doi:10.1002/cite.201800157

WANG, K., & CHUNG, T. (2006). Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate. Journal of Membrane Science, 281(1-2), 307-315. doi:10.1016/j.memsci.2006.03.045

Ansaloni, L., Minelli, M., Giacinti Baschetti, M., & Sarti, G. C. (2014). Effects of Thermal Treatment and Physical Aging on the Gas Transport Properties in Matrimid®. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 70(2), 367-379. doi:10.2516/ogst/2013188

Pye, D. G., Hoehn, H. H., & Panar, M. (1976). Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus. Journal of Applied Polymer Science, 20(7), 1921-1931. doi:10.1002/app.1976.070200719

Tena, A., Shishatskiy, S., Meis, D., Wind, J., Filiz, V., & Abetz, V. (2017). Influence of the Composition and Imidization Route on the Chain Packing and Gas Separation Properties of Fluorinated Copolyimides. Macromolecules, 50(15), 5839-5849. doi:10.1021/acs.macromol.7b01051

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem