- -

Encapsulation of Metal Nanoparticles within Metal¿Organic Frameworks for the Reduction of Nitro Compounds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Encapsulation of Metal Nanoparticles within Metal¿Organic Frameworks for the Reduction of Nitro Compounds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-01-20T04:32:23Z
dc.date.available 2021-01-20T04:32:23Z
dc.date.issued 2019-09-01 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159536
dc.description.abstract [EN] Nitro group reduction is a reaction of a considerable importance for the preparation of bulk chemicals and in organic synthesis. There are reports in the literature showing that incorporation of metal nanoparticles (MNPs) inside metal-organic frameworks (MOFs) is a suitable strategy to develop catalysts for these reactions. Some of the examples reported in the literature have shown activity data confirming the superior performance of MNPs inside MOFs. In the present review, the existing literature reports have been grouped depending on whether these MNPs correspond to a single metal or they are alloys. The final section of this review summarizes the state of the art and forecasts future developments in the field. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. is thankful for financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016) and Ministerio de Ciencia, Innovacion y Universidades CTQ-2018 RTI2018-099482-A-I00 project. AD also thanks the Science Engineering Research Board, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Metal nanoparticles es_ES
dc.subject Nitro compounds es_ES
dc.subject Reduction reaction es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Encapsulation of Metal Nanoparticles within Metal¿Organic Frameworks for the Reduction of Nitro Compounds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules24173050 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Navalón Oltra, S.; Alvaro Rodríguez, MM.; Dhakshinamoorthy, A.; García Gómez, H. (2019). Encapsulation of Metal Nanoparticles within Metal¿Organic Frameworks for the Reduction of Nitro Compounds. Molecules. 24(17):1-23. https://doi.org/10.3390/molecules24173050 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules24173050 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 17 es_ES
dc.identifier.pmid 31443444 es_ES
dc.identifier.pmcid PMC6749428 es_ES
dc.relation.pasarela S\407142 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.description.references Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 es_ES
dc.description.references Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444 es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 es_ES
dc.description.references Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 es_ES
dc.description.references Silva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307e es_ES
dc.description.references Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e es_ES
dc.description.references Liu, F.-L., Kozlevčar, B., Strauch, P., Zhuang, G.-L., Guo, L.-Y., Wang, Z., & Sun, D. (2015). Robust Cluster Building Unit: Icosanuclear Heteropolyoxocopperate Templated by Carbonate. Chemistry - A European Journal, 21(51), 18847-18854. doi:10.1002/chem.201502834 es_ES
dc.description.references Wang, X.-P., Chen, W.-M., Qi, H., Li, X.-Y., Rajnák, C., Feng, Z.-Y., … Sun, D. (2017). Solvent-Controlled Phase Transition of a CoII -Organic Framework: From Achiral to Chiral and Two to Three Dimensions. Chemistry - A European Journal, 23(33), 7990-7996. doi:10.1002/chem.201700474 es_ES
dc.description.references Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. doi:10.1039/c6ce02660e es_ES
dc.description.references Maksimchuk, N. V., Zalomaeva, O. V., Skobelev, I. Y., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2143), 2017-2034. doi:10.1098/rspa.2012.0072 es_ES
dc.description.references Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577c es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236 es_ES
dc.description.references Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829a es_ES
dc.description.references Yuan, S., Deng, Y.-K., & Sun, D. (2014). Unprecedented Second-Timescale Blue/Green Emissions and Iodine-Uptake-Induced Single-Crystal-to-Single-Crystal Transformation in ZnII/CdIIMetal-Organic Frameworks. Chemistry - A European Journal, 20(32), 10093-10098. doi:10.1002/chem.201402211 es_ES
dc.description.references Jiang, J., & Yaghi, O. M. (2015). Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 115(14), 6966-6997. doi:10.1021/acs.chemrev.5b00221 es_ES
dc.description.references Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 es_ES
dc.description.references Chen, L., Luque, R., & Li, Y. (2017). Controllable design of tunable nanostructures inside metal–organic frameworks. Chemical Society Reviews, 46(15), 4614-4630. doi:10.1039/c6cs00537c es_ES
dc.description.references Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386 es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e es_ES
dc.description.references Falcaro, P., Ricco, R., Yazdi, A., Imaz, I., Furukawa, S., Maspoch, D., … Doonan, C. J. (2016). Application of metal and metal oxide nanoparticles@MOFs. Coordination Chemistry Reviews, 307, 237-254. doi:10.1016/j.ccr.2015.08.002 es_ES
dc.description.references Hu, P., Morabito, J. V., & Tsung, C.-K. (2014). Core–Shell Catalysts of Metal Nanoparticle Core and Metal–Organic Framework Shell. ACS Catalysis, 4(12), 4409-4419. doi:10.1021/cs5012662 es_ES
dc.description.references Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a es_ES
dc.description.references Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c es_ES
dc.description.references Moon, H. R., Lim, D.-W., & Suh, M. P. (2013). Fabrication of metal nanoparticles in metal–organic frameworks. Chem. Soc. Rev., 42(4), 1807-1824. doi:10.1039/c2cs35320b es_ES
dc.description.references Rösler, C., & Fischer, R. A. (2015). Metal–organic frameworks as hosts for nanoparticles. CrystEngComm, 17(2), 199-217. doi:10.1039/c4ce01251h es_ES
dc.description.references Wang, N., Sun, Q., & Yu, J. (2018). Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 31(1), 1803966. doi:10.1002/adma.201803966 es_ES
dc.description.references Xiang, W., Zhang, Y., Lin, H., & Liu, C. (2017). Nanoparticle/Metal–Organic Framework Composites for Catalytic Applications: Current Status and Perspective. Molecules, 22(12), 2103. doi:10.3390/molecules22122103 es_ES
dc.description.references Yang, Q., Xu, Q., & Jiang, H.-L. (2017). Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 46(15), 4774-4808. doi:10.1039/c6cs00724d es_ES
dc.description.references Yang, Q., Yang, C.-C., Lin, C.-H., & Jiang, H.-L. (2019). Metal-Organic-Framework-Derived Hollow N-Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angewandte Chemie International Edition, 58(11), 3511-3515. doi:10.1002/anie.201813494 es_ES
dc.description.references Cui, Y., Li, B., He, H., Zhou, W., Chen, B., & Qian, G. (2016). Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 49(3), 483-493. doi:10.1021/acs.accounts.5b00530 es_ES
dc.description.references James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g es_ES
dc.description.references Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 es_ES
dc.description.references Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034 es_ES
dc.description.references Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x es_ES
dc.description.references Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473 es_ES
dc.description.references Santiago‐Portillo, A., Cabrero‐Antonino, M., Álvaro, M., Navalón, S., & García, H. (2019). Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL‐101(Cr) for the Selective Oxidation of Alcohols with O 2  : Influence of the Amino Terephthalate Linker. Chemistry – A European Journal, 25(39), 9280-9286. doi:10.1002/chem.201901361 es_ES
dc.description.references Zanon, A., & Verpoort, F. (2017). Metals@ZIFs: Catalytic applications and size selective catalysis. Coordination Chemistry Reviews, 353, 201-222. doi:10.1016/j.ccr.2017.09.030 es_ES
dc.description.references Aditya, T., Pal, A., & Pal, T. (2015). Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chemical Communications, 51(46), 9410-9431. doi:10.1039/c5cc01131k es_ES
dc.description.references Blaser, H.-U., Malan, C., Pugin, B., Spindler, F., Steiner, H., & Studer, M. (2003). Selective Hydrogenation for Fine Chemicals: Recent Trends and New Developments. Advanced Synthesis & Catalysis, 345(12), 103-151. doi:10.1002/adsc.200390000 es_ES
dc.description.references Tafesh, A. M., & Weiguny, J. (1996). A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, and Ureas Using CO. Chemical Reviews, 96(6), 2035-2052. doi:10.1021/cr950083f es_ES
dc.description.references Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m es_ES
dc.description.references Jhung, S. H., Lee, J.-H., Yoon, J. W., Serre, C., Férey, G., & Chang, J.-S. (2007). Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Advanced Materials, 19(1), 121-124. doi:10.1002/adma.200601604 es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v es_ES
dc.description.references Aijaz, A., Karkamkar, A., Choi, Y. J., Tsumori, N., Rönnebro, E., Autrey, T., … Xu, Q. (2012). Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal–Organic Framework: A Double Solvents Approach. Journal of the American Chemical Society, 134(34), 13926-13929. doi:10.1021/ja3043905 es_ES
dc.description.references Zhu, Q.-L., Li, J., & Xu, Q. (2013). Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 135(28), 10210-10213. doi:10.1021/ja403330m es_ES
dc.description.references Li, G., Zhao, S., Zhang, Y., & Tang, Z. (2018). Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 30(51), 1800702. doi:10.1002/adma.201800702 es_ES
dc.description.references Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G., & Fischer, R. A. (2010). Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials, 22(23), 6393-6401. doi:10.1021/cm102529c es_ES
dc.description.references Chen, Y.-Z., Zhou, Y.-X., Wang, H., Lu, J., Uchida, T., Xu, Q., … Jiang, H.-L. (2015). Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis. ACS Catalysis, 5(4), 2062-2069. doi:10.1021/cs501953d es_ES
dc.description.references Zhuang, G., Bai, J., Tan, L., Huang, H., Gao, Y., Zhong, X., … Wang, J. (2015). Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances, 5(41), 32714-32719. doi:10.1039/c5ra03286e es_ES
dc.description.references Zheng, D., Zhou, X., Mutyala, S., & Huang, X. (2018). High Catalytic Activity of C 60 Pd n Encapsulated in Metal–Organic Framework UiO‐67, for Tandem Hydrogenation Reaction. Chemistry – A European Journal, 24(72), 19141-19145. doi:10.1002/chem.201803900 es_ES
dc.description.references Yang, Q., Zhang, H.-Y., Wang, L., Zhang, Y., & Zhao, J. (2018). Ru/UiO-66 Catalyst for the Reduction of Nitroarenes and Tandem Reaction of Alcohol Oxidation/Knoevenagel Condensation. ACS Omega, 3(4), 4199-4212. doi:10.1021/acsomega.8b00157 es_ES
dc.description.references Gole, B., Sanyal, U., & Mukherjee, P. S. (2015). A smart approach to achieve an exceptionally high loading of metal nanoparticles supported by functionalized extended frameworks for efficient catalysis. Chemical Communications, 51(23), 4872-4875. doi:10.1039/c4cc09228g es_ES
dc.description.references Gao, G., Xi, Q., Zhang, Y., Jin, M., Zhao, Y., Wu, C., … Xu, J. (2019). Atomic-scale engineering of MOF array confined Au nanoclusters for enhanced heterogeneous catalysis. Nanoscale, 11(3), 1169-1176. doi:10.1039/c8nr07739h es_ES
dc.description.references Zhang, H., Qi, S., Niu, X., Hu, J., Ren, C., Chen, H., & Chen, X. (2014). Metallic nanoparticles immobilized in magnetic metal–organic frameworks: preparation and application as highly active, magnetically isolable and reusable catalysts. Catalysis Science & Technology, 4(9), 3013. doi:10.1039/c4cy00072b es_ES
dc.description.references Park, Y. K., Choi, S. B., Nam, H. J., Jung, D.-Y., Ahn, H. C., Choi, K., … Kim, J. (2010). Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chemical Communications, 46(18), 3086. doi:10.1039/c000775g es_ES
dc.description.references Yin, D., Li, C., Ren, H., Liu, J., & Liang, C. (2018). Gold‐Palladium‐Alloy‐Catalyst Loaded UiO‐66‐NH 2 for Reductive Amination with Nitroarenes Exhibiting High Selectivity. ChemistrySelect, 3(18), 5092-5097. doi:10.1002/slct.201800740 es_ES
dc.description.references Chen, L., Chen, X., Liu, H., & Li, Y. (2015). Encapsulation of Mono- or Bimetal Nanoparticles Inside Metal-Organic Frameworks via In situ Incorporation of Metal Precursors. Small, 11(22), 2642-2648. doi:10.1002/smll.201403599 es_ES
dc.description.references Rösler, C., Dissegna, S., Rechac, V. L., Kauer, M., Guo, P., Turner, S., … Fischer, R. A. (2017). Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation. Chemistry - A European Journal, 23(15), 3583-3594. doi:10.1002/chem.201603984 es_ES
dc.description.references Chang, L., & Li, Y. (2017). One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis. Molecular Catalysis, 433, 77-83. doi:10.1016/j.mcat.2017.01.009 es_ES
dc.description.references Zhou, Y.-H., Yang, Q., Chen, Y.-Z., & Jiang, H.-L. (2017). Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: integration of ammonia borane dehydrogenation with nitroarene hydrogenation. Chemical Communications, 53(91), 12361-12364. doi:10.1039/c7cc06530b es_ES
dc.description.references Sun, J.-L., Chen, Y.-Z., Ge, B.-D., Li, J.-H., & Wang, G.-M. (2018). Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal–Organic Framework for Enhanced Tandem Catalysis. ACS Applied Materials & Interfaces, 11(1), 940-947. doi:10.1021/acsami.8b18584 es_ES
dc.description.references Bellina, F., Calandri, C., Cauteruccio, S., & Rossi, R. (2007). Efficient and highly regioselective direct C-2 arylation of azoles, including free (NH)-imidazole, -benzimidazole and -indole, with aryl halides. Tetrahedron, 63(9), 1970-1980. doi:10.1016/j.tet.2006.12.068 es_ES
dc.description.references Nagashima, H., Kato, Y., Yamaguchi, H., Kimura, E., Kawanishi, T., Kato, M., … Itoh, K. (1994). Synthesis and Reactions of Organoplatinum Compounds of C60, C60Ptn. Chemistry Letters, 23(7), 1207-1210. doi:10.1246/cl.1994.1207 es_ES
dc.description.references Nagashima, H., Nakaoka, A., Saito, Y., Kato, M., Kawanishi, T., & Itoh, K. (1992). C60Pd n : the first organometallic polymer of buckminsterfullerene. Journal of the Chemical Society, Chemical Communications, (4), 377. doi:10.1039/c39920000377 es_ES
dc.description.references Nishiyama, K., Ehara, M., Katsube, S., & Kaji, T. (2017). Synthesis of Optically Clear Molecular Organogels Comprising Phenol and Surfactants of Sulfosuccinic Acid Derivatives. Chemistry Letters, 46(9), 1361-1364. doi:10.1246/cl.170540 es_ES
dc.description.references Li, B., & Xu, Z. (2009). A Nonmetal Catalyst for Molecular Hydrogen Activation with Comparable Catalytic Hydrogenation Capability to Noble Metal Catalyst. Journal of the American Chemical Society, 131(45), 16380-16382. doi:10.1021/ja9061097 es_ES
dc.description.references Han, Y., Liu, M., Li, K., Zuo, Y., Wei, Y., Xu, S., … Guo, X. (2015). Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 17(33), 6434-6440. doi:10.1039/c5ce00729a es_ES
dc.description.references Liu, Y., Liu, Z., Huang, D., Cheng, M., Zeng, G., Lai, C., … Shao, B. (2019). Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews, 388, 63-78. doi:10.1016/j.ccr.2019.02.031 es_ES
dc.description.references Layek, K., Kantam, M. L., Shirai, M., Nishio-Hamane, D., Sasaki, T., & Maheswaran, H. (2012). Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chemistry, 14(11), 3164. doi:10.1039/c2gc35917k es_ES
dc.description.references Hayakawa, K., Yoshimura, T., & Esumi, K. (2003). Preparation of Gold−Dendrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol. Langmuir, 19(13), 5517-5521. doi:10.1021/la034339l es_ES
dc.description.references Lee, J., Park, J. C., & Song, H. (2008). A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction ofp-Nitrophenol. Advanced Materials, 20(8), 1523-1528. doi:10.1002/adma.200702338 es_ES
dc.description.references Fazzini, S., Cassani, M. C., Ballarin, B., Boanini, E., Girardon, J. S., Mamede, A.-S., … Nanni, D. (2014). Novel Synthesis of Gold Nanoparticles Supported on Alkyne-Functionalized Nanosilica. The Journal of Physical Chemistry C, 118(42), 24538-24547. doi:10.1021/jp507637m es_ES
dc.description.references Ballarin, B., Barreca, D., Boanini, E., Bonansegna, E., Cassani, M. C., Carraro, G., … Pinelli, D. (2016). Functionalization of silica through thiol-yne radical chemistry: a catalytic system based on gold nanoparticles supported on amino-sulfide-branched silica. RSC Advances, 6(31), 25780-25788. doi:10.1039/c6ra02479c es_ES
dc.description.references Zhang, J., Chen, G., Chaker, M., Rosei, F., & Ma, D. (2013). Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Applied Catalysis B: Environmental, 132-133, 107-115. doi:10.1016/j.apcatb.2012.11.030 es_ES
dc.description.references Qiu, L., Peng, Y., Liu, B., Lin, B., Peng, Y., Malik, M. J., & Yan, F. (2012). Polypyrrole nanotube-supported gold nanoparticles: An efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Applied Catalysis A: General, 413-414, 230-237. doi:10.1016/j.apcata.2011.11.013 es_ES
dc.description.references Ke, F., Zhu, J., Qiu, L.-G., & Jiang, X. (2013). Controlled synthesis of novel Au@MIL-100(Fe) core–shell nanoparticles with enhanced catalytic performance. Chem. Commun., 49(13), 1267-1269. doi:10.1039/c2cc33964a es_ES
dc.description.references Huang, X., Guo, C., Zuo, J., Zheng, N., & Stucky, G. D. (2009). An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties. Small, 5(3), 361-365. doi:10.1002/smll.200800808 es_ES
dc.description.references Jiang, H.-L., Akita, T., Ishida, T., Haruta, M., & Xu, Q. (2011). Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework. Journal of the American Chemical Society, 133(5), 1304-1306. doi:10.1021/ja1099006 es_ES
dc.description.references Hu, W., Liu, B., Wang, Q., Liu, Y., Liu, Y., Jing, P., … Zhang, J. (2013). A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chemical Communications, 49(69), 7596. doi:10.1039/c3cc42687d es_ES
dc.description.references Li, X., Guo, Z., Xiao, C., Goh, T. W., Tesfagaber, D., & Huang, W. (2014). Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catalysis, 4(10), 3490-3497. doi:10.1021/cs5006635 es_ES
dc.description.references Zhao, M., Deng, K., He, L., Liu, Y., Li, G., Zhao, H., & Tang, Z. (2014). Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions. Journal of the American Chemical Society, 136(5), 1738-1741. doi:10.1021/ja411468e es_ES
dc.description.references Li, Z., Yu, R., Huang, J., Shi, Y., Zhang, D., Zhong, X., … Li, Y. (2015). Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nature Communications, 6(1). doi:10.1038/ncomms9248 es_ES
dc.description.references Metin, Ö., Özkar, S., & Sun, S. (2010). Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Research, 3(9), 676-684. doi:10.1007/s12274-010-0031-7 es_ES
dc.description.references Chen, Y.-Z., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2014). Tiny Pd@Co Core-Shell Nanoparticles Confined inside a Metal-Organic Framework for Highly Efficient Catalysis. Small, 11(1), 71-76. doi:10.1002/smll.201401875 es_ES
dc.description.references Li, J., Zhu, Q.-L., & Xu, Q. (2015). Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science & Technology, 5(1), 525-530. doi:10.1039/c4cy01049c es_ES
dc.description.references Chen, Y.-Z., Liang, L., Yang, Q., Hong, M., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2015). A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal–organic framework for highly efficient catalysis. Materials Horizons, 2(6), 606-612. doi:10.1039/c5mh00125k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem