Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208
Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444
[+]
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208
Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444
Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610
Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650
Silva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307e
Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e
Liu, F.-L., Kozlevčar, B., Strauch, P., Zhuang, G.-L., Guo, L.-Y., Wang, Z., & Sun, D. (2015). Robust Cluster Building Unit: Icosanuclear Heteropolyoxocopperate Templated by Carbonate. Chemistry - A European Journal, 21(51), 18847-18854. doi:10.1002/chem.201502834
Wang, X.-P., Chen, W.-M., Qi, H., Li, X.-Y., Rajnák, C., Feng, Z.-Y., … Sun, D. (2017). Solvent-Controlled Phase Transition of a CoII
-Organic Framework: From Achiral to Chiral and Two to Three Dimensions. Chemistry - A European Journal, 23(33), 7990-7996. doi:10.1002/chem.201700474
Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. doi:10.1039/c6ce02660e
Maksimchuk, N. V., Zalomaeva, O. V., Skobelev, I. Y., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2143), 2017-2034. doi:10.1098/rspa.2012.0072
Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577c
Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236
Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829a
Yuan, S., Deng, Y.-K., & Sun, D. (2014). Unprecedented Second-Timescale Blue/Green Emissions and Iodine-Uptake-Induced Single-Crystal-to-Single-Crystal Transformation in ZnII/CdIIMetal-Organic Frameworks. Chemistry - A European Journal, 20(32), 10093-10098. doi:10.1002/chem.201402211
Jiang, J., & Yaghi, O. M. (2015). Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 115(14), 6966-6997. doi:10.1021/acs.chemrev.5b00221
Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091
Chen, L., Luque, R., & Li, Y. (2017). Controllable design of tunable nanostructures inside metal–organic frameworks. Chemical Society Reviews, 46(15), 4614-4630. doi:10.1039/c6cs00537c
Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k
Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386
Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e
Falcaro, P., Ricco, R., Yazdi, A., Imaz, I., Furukawa, S., Maspoch, D., … Doonan, C. J. (2016). Application of metal and metal oxide nanoparticles@MOFs. Coordination Chemistry Reviews, 307, 237-254. doi:10.1016/j.ccr.2015.08.002
Hu, P., Morabito, J. V., & Tsung, C.-K. (2014). Core–Shell Catalysts of Metal Nanoparticle Core and Metal–Organic Framework Shell. ACS Catalysis, 4(12), 4409-4419. doi:10.1021/cs5012662
Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a
Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c
Moon, H. R., Lim, D.-W., & Suh, M. P. (2013). Fabrication of metal nanoparticles in metal–organic frameworks. Chem. Soc. Rev., 42(4), 1807-1824. doi:10.1039/c2cs35320b
Rösler, C., & Fischer, R. A. (2015). Metal–organic frameworks as hosts for nanoparticles. CrystEngComm, 17(2), 199-217. doi:10.1039/c4ce01251h
Wang, N., Sun, Q., & Yu, J. (2018). Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 31(1), 1803966. doi:10.1002/adma.201803966
Xiang, W., Zhang, Y., Lin, H., & Liu, C. (2017). Nanoparticle/Metal–Organic Framework Composites for Catalytic Applications: Current Status and Perspective. Molecules, 22(12), 2103. doi:10.3390/molecules22122103
Yang, Q., Xu, Q., & Jiang, H.-L. (2017). Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 46(15), 4774-4808. doi:10.1039/c6cs00724d
Yang, Q., Yang, C.-C., Lin, C.-H., & Jiang, H.-L. (2019). Metal-Organic-Framework-Derived Hollow N-Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angewandte Chemie International Edition, 58(11), 3511-3515. doi:10.1002/anie.201813494
Cui, Y., Li, B., He, H., Zhou, W., Chen, B., & Qian, G. (2016). Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 49(3), 483-493. doi:10.1021/acs.accounts.5b00530
James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g
Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248
Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034
Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x
Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473
Santiago‐Portillo, A., Cabrero‐Antonino, M., Álvaro, M., Navalón, S., & García, H. (2019). Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL‐101(Cr) for the Selective Oxidation of Alcohols with O
2
: Influence of the Amino Terephthalate Linker. Chemistry – A European Journal, 25(39), 9280-9286. doi:10.1002/chem.201901361
Zanon, A., & Verpoort, F. (2017). Metals@ZIFs: Catalytic applications and size selective catalysis. Coordination Chemistry Reviews, 353, 201-222. doi:10.1016/j.ccr.2017.09.030
Aditya, T., Pal, A., & Pal, T. (2015). Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chemical Communications, 51(46), 9410-9431. doi:10.1039/c5cc01131k
Blaser, H.-U., Malan, C., Pugin, B., Spindler, F., Steiner, H., & Studer, M. (2003). Selective Hydrogenation for Fine Chemicals: Recent Trends and New Developments. Advanced Synthesis & Catalysis, 345(12), 103-151. doi:10.1002/adsc.200390000
Tafesh, A. M., & Weiguny, J. (1996). A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, and Ureas Using CO. Chemical Reviews, 96(6), 2035-2052. doi:10.1021/cr950083f
Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m
Jhung, S. H., Lee, J.-H., Yoon, J. W., Serre, C., Férey, G., & Chang, J.-S. (2007). Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Advanced Materials, 19(1), 121-124. doi:10.1002/adma.200601604
Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953
Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v
Aijaz, A., Karkamkar, A., Choi, Y. J., Tsumori, N., Rönnebro, E., Autrey, T., … Xu, Q. (2012). Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal–Organic Framework: A Double Solvents Approach. Journal of the American Chemical Society, 134(34), 13926-13929. doi:10.1021/ja3043905
Zhu, Q.-L., Li, J., & Xu, Q. (2013). Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 135(28), 10210-10213. doi:10.1021/ja403330m
Li, G., Zhao, S., Zhang, Y., & Tang, Z. (2018). Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 30(51), 1800702. doi:10.1002/adma.201800702
Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G., & Fischer, R. A. (2010). Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials, 22(23), 6393-6401. doi:10.1021/cm102529c
Chen, Y.-Z., Zhou, Y.-X., Wang, H., Lu, J., Uchida, T., Xu, Q., … Jiang, H.-L. (2015). Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis. ACS Catalysis, 5(4), 2062-2069. doi:10.1021/cs501953d
Zhuang, G., Bai, J., Tan, L., Huang, H., Gao, Y., Zhong, X., … Wang, J. (2015). Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances, 5(41), 32714-32719. doi:10.1039/c5ra03286e
Zheng, D., Zhou, X., Mutyala, S., & Huang, X. (2018). High Catalytic Activity of C
60
Pd
n
Encapsulated in Metal–Organic Framework UiO‐67, for Tandem Hydrogenation Reaction. Chemistry – A European Journal, 24(72), 19141-19145. doi:10.1002/chem.201803900
Yang, Q., Zhang, H.-Y., Wang, L., Zhang, Y., & Zhao, J. (2018). Ru/UiO-66 Catalyst for the Reduction of Nitroarenes and Tandem Reaction of Alcohol Oxidation/Knoevenagel Condensation. ACS Omega, 3(4), 4199-4212. doi:10.1021/acsomega.8b00157
Gole, B., Sanyal, U., & Mukherjee, P. S. (2015). A smart approach to achieve an exceptionally high loading of metal nanoparticles supported by functionalized extended frameworks for efficient catalysis. Chemical Communications, 51(23), 4872-4875. doi:10.1039/c4cc09228g
Gao, G., Xi, Q., Zhang, Y., Jin, M., Zhao, Y., Wu, C., … Xu, J. (2019). Atomic-scale engineering of MOF array confined Au nanoclusters for enhanced heterogeneous catalysis. Nanoscale, 11(3), 1169-1176. doi:10.1039/c8nr07739h
Zhang, H., Qi, S., Niu, X., Hu, J., Ren, C., Chen, H., & Chen, X. (2014). Metallic nanoparticles immobilized in magnetic metal–organic frameworks: preparation and application as highly active, magnetically isolable and reusable catalysts. Catalysis Science & Technology, 4(9), 3013. doi:10.1039/c4cy00072b
Park, Y. K., Choi, S. B., Nam, H. J., Jung, D.-Y., Ahn, H. C., Choi, K., … Kim, J. (2010). Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chemical Communications, 46(18), 3086. doi:10.1039/c000775g
Yin, D., Li, C., Ren, H., Liu, J., & Liang, C. (2018). Gold‐Palladium‐Alloy‐Catalyst Loaded UiO‐66‐NH
2
for Reductive Amination with Nitroarenes Exhibiting High Selectivity. ChemistrySelect, 3(18), 5092-5097. doi:10.1002/slct.201800740
Chen, L., Chen, X., Liu, H., & Li, Y. (2015). Encapsulation of Mono- or Bimetal Nanoparticles Inside Metal-Organic Frameworks via In situ Incorporation of Metal Precursors. Small, 11(22), 2642-2648. doi:10.1002/smll.201403599
Rösler, C., Dissegna, S., Rechac, V. L., Kauer, M., Guo, P., Turner, S., … Fischer, R. A. (2017). Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation. Chemistry - A European Journal, 23(15), 3583-3594. doi:10.1002/chem.201603984
Chang, L., & Li, Y. (2017). One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis. Molecular Catalysis, 433, 77-83. doi:10.1016/j.mcat.2017.01.009
Zhou, Y.-H., Yang, Q., Chen, Y.-Z., & Jiang, H.-L. (2017). Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: integration of ammonia borane dehydrogenation with nitroarene hydrogenation. Chemical Communications, 53(91), 12361-12364. doi:10.1039/c7cc06530b
Sun, J.-L., Chen, Y.-Z., Ge, B.-D., Li, J.-H., & Wang, G.-M. (2018). Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal–Organic Framework for Enhanced Tandem Catalysis. ACS Applied Materials & Interfaces, 11(1), 940-947. doi:10.1021/acsami.8b18584
Bellina, F., Calandri, C., Cauteruccio, S., & Rossi, R. (2007). Efficient and highly regioselective direct C-2 arylation of azoles, including free (NH)-imidazole, -benzimidazole and -indole, with aryl halides. Tetrahedron, 63(9), 1970-1980. doi:10.1016/j.tet.2006.12.068
Nagashima, H., Kato, Y., Yamaguchi, H., Kimura, E., Kawanishi, T., Kato, M., … Itoh, K. (1994). Synthesis and Reactions of Organoplatinum Compounds of C60, C60Ptn. Chemistry Letters, 23(7), 1207-1210. doi:10.1246/cl.1994.1207
Nagashima, H., Nakaoka, A., Saito, Y., Kato, M., Kawanishi, T., & Itoh, K. (1992). C60Pd n : the first organometallic polymer of buckminsterfullerene. Journal of the Chemical Society, Chemical Communications, (4), 377. doi:10.1039/c39920000377
Nishiyama, K., Ehara, M., Katsube, S., & Kaji, T. (2017). Synthesis of Optically Clear Molecular Organogels Comprising Phenol and Surfactants of Sulfosuccinic Acid Derivatives. Chemistry Letters, 46(9), 1361-1364. doi:10.1246/cl.170540
Li, B., & Xu, Z. (2009). A Nonmetal Catalyst for Molecular Hydrogen Activation with Comparable Catalytic Hydrogenation Capability to Noble Metal Catalyst. Journal of the American Chemical Society, 131(45), 16380-16382. doi:10.1021/ja9061097
Han, Y., Liu, M., Li, K., Zuo, Y., Wei, Y., Xu, S., … Guo, X. (2015). Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 17(33), 6434-6440. doi:10.1039/c5ce00729a
Liu, Y., Liu, Z., Huang, D., Cheng, M., Zeng, G., Lai, C., … Shao, B. (2019). Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews, 388, 63-78. doi:10.1016/j.ccr.2019.02.031
Layek, K., Kantam, M. L., Shirai, M., Nishio-Hamane, D., Sasaki, T., & Maheswaran, H. (2012). Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chemistry, 14(11), 3164. doi:10.1039/c2gc35917k
Hayakawa, K., Yoshimura, T., & Esumi, K. (2003). Preparation of Gold−Dendrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol. Langmuir, 19(13), 5517-5521. doi:10.1021/la034339l
Lee, J., Park, J. C., & Song, H. (2008). A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction ofp-Nitrophenol. Advanced Materials, 20(8), 1523-1528. doi:10.1002/adma.200702338
Fazzini, S., Cassani, M. C., Ballarin, B., Boanini, E., Girardon, J. S., Mamede, A.-S., … Nanni, D. (2014). Novel Synthesis of Gold Nanoparticles Supported on Alkyne-Functionalized Nanosilica. The Journal of Physical Chemistry C, 118(42), 24538-24547. doi:10.1021/jp507637m
Ballarin, B., Barreca, D., Boanini, E., Bonansegna, E., Cassani, M. C., Carraro, G., … Pinelli, D. (2016). Functionalization of silica through thiol-yne radical chemistry: a catalytic system based on gold nanoparticles supported on amino-sulfide-branched silica. RSC Advances, 6(31), 25780-25788. doi:10.1039/c6ra02479c
Zhang, J., Chen, G., Chaker, M., Rosei, F., & Ma, D. (2013). Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Applied Catalysis B: Environmental, 132-133, 107-115. doi:10.1016/j.apcatb.2012.11.030
Qiu, L., Peng, Y., Liu, B., Lin, B., Peng, Y., Malik, M. J., & Yan, F. (2012). Polypyrrole nanotube-supported gold nanoparticles: An efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Applied Catalysis A: General, 413-414, 230-237. doi:10.1016/j.apcata.2011.11.013
Ke, F., Zhu, J., Qiu, L.-G., & Jiang, X. (2013). Controlled synthesis of novel Au@MIL-100(Fe) core–shell nanoparticles with enhanced catalytic performance. Chem. Commun., 49(13), 1267-1269. doi:10.1039/c2cc33964a
Huang, X., Guo, C., Zuo, J., Zheng, N., & Stucky, G. D. (2009). An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties. Small, 5(3), 361-365. doi:10.1002/smll.200800808
Jiang, H.-L., Akita, T., Ishida, T., Haruta, M., & Xu, Q. (2011). Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework. Journal of the American Chemical Society, 133(5), 1304-1306. doi:10.1021/ja1099006
Hu, W., Liu, B., Wang, Q., Liu, Y., Liu, Y., Jing, P., … Zhang, J. (2013). A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chemical Communications, 49(69), 7596. doi:10.1039/c3cc42687d
Li, X., Guo, Z., Xiao, C., Goh, T. W., Tesfagaber, D., & Huang, W. (2014). Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catalysis, 4(10), 3490-3497. doi:10.1021/cs5006635
Zhao, M., Deng, K., He, L., Liu, Y., Li, G., Zhao, H., & Tang, Z. (2014). Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions. Journal of the American Chemical Society, 136(5), 1738-1741. doi:10.1021/ja411468e
Li, Z., Yu, R., Huang, J., Shi, Y., Zhang, D., Zhong, X., … Li, Y. (2015). Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nature Communications, 6(1). doi:10.1038/ncomms9248
Metin, Ö., Özkar, S., & Sun, S. (2010). Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Research, 3(9), 676-684. doi:10.1007/s12274-010-0031-7
Chen, Y.-Z., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2014). Tiny Pd@Co Core-Shell Nanoparticles Confined inside a Metal-Organic Framework for Highly Efficient Catalysis. Small, 11(1), 71-76. doi:10.1002/smll.201401875
Li, J., Zhu, Q.-L., & Xu, Q. (2015). Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science & Technology, 5(1), 525-530. doi:10.1039/c4cy01049c
Chen, Y.-Z., Liang, L., Yang, Q., Hong, M., Xu, Q., Yu, S.-H., & Jiang, H.-L. (2015). A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal–organic framework for highly efficient catalysis. Materials Horizons, 2(6), 606-612. doi:10.1039/c5mh00125k
[-]