- -

The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure

Mostrar el registro completo del ítem

Schwanke, AJ.; Díaz Morales, UM.; Corma Canós, A.; Pergher, S. (2019). The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure. Microporous and Mesoporous Materials. 275:26-30. https://doi.org/10.1016/j.micromeso.2018.08.010

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159539

Ficheros en el ítem

Metadatos del ítem

Título: The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure
Autor: Schwanke, Anderson Joel DÍAZ MORALES, URBANO MANUEL Corma Canós, Avelino Pergher, Sibele
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] We studied the influence of the ethanol used as a washing solvent for obtaining swollen and pillared MWW topology zeolites with long-range ordering of lamellar structure. The diffractogram results showed that the ...[+]
Palabras clave: Ethanol extraction , MWW , MCM-22 , Swelling , Pillaring , Hierarchical zeolites
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Microporous and Mesoporous Materials. (issn: 1387-1811 )
DOI: 10.1016/j.micromeso.2018.08.010
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.micromeso.2018.08.010
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
info:eu-repo/grantAgreement/CAPES//99999.004779%2F2014-02/
Agradecimientos:
Anderson Joel Schwanke is grateful the CAPES Foundation and PDSE program (process number 99999.004779/2014-02). Urbano Diaz acknowledges to the Spanish Government (MAT2014-52085-C2-1-P and MAT2017-82288-C2-1-P).
Tipo: Artículo

References

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

IZA, International Zeolite Association, web page http://www.iza-structure.org/.

Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f [+]
Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

IZA, International Zeolite Association, web page http://www.iza-structure.org/.

Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f

Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Schwanke, A. J., Pergher, S., Díaz, U., & Corma, A. (2017). The influence of swelling agents molecular dimensions on lamellar morphology of MWW-type zeolites active for fructose conversion. Microporous and Mesoporous Materials, 254, 17-27. doi:10.1016/j.micromeso.2016.11.007

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

C.T. Kresge, W.J. Roth, K.G. Simmons, J.C. Vartuli, WO1992011934 A1 patent, 1992.

Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-x

Dumitriu, E., Secundo, F., Patarin, J., & Fechete, I. (2003). Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B: Enzymatic, 22(3-4), 119-133. doi:10.1016/s1381-1177(03)00015-8

Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006

Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711i

Schwanke, A. J., Díaz, U., Corma, A., & Pergher, S. (2017). Recyclable swelling solutions for friendly preparation of pillared MWW-type zeolites. Microporous and Mesoporous Materials, 253, 91-95. doi:10.1016/j.micromeso.2017.06.045

Opanasenko, M. V., Roth, W. J., & Čejka, J. (2016). Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science & Technology, 6(8), 2467-2484. doi:10.1039/c5cy02079d

González-Rivera, J., Tovar-Rodríguez, J., Bramanti, E., Duce, C., Longo, I., Fratini, E., … Ferrari, C. (2014). Surfactant recovery from mesoporous metal-modified materials (Sn–, Y–, Ce–, Si–MCM-41), by ultrasound assisted ion-exchange extraction and its re-use for a microwave in situ cheap and eco-friendly MCM-41 synthesis. J. Mater. Chem. A, 2(19), 7020-7033. doi:10.1039/c3ta15078j

Lang, N., & Tuel, A. (2004). A Fast and Efficient Ion-Exchange Procedure To Remove Surfactant Molecules from MCM-41 Materials. Chemistry of Materials, 16(10), 1961-1966. doi:10.1021/cm030633n

De Ávila, S. G., Silva, L. C. C., & Matos, J. R. (2016). Optimisation of SBA-15 properties using Soxhlet solvent extraction for template removal. Microporous and Mesoporous Materials, 234, 277-286. doi:10.1016/j.micromeso.2016.07.027

Prado, A. G. S., & Airoldi, C. (2002). Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas. Journal of Materials Chemistry, 12(12), 3823-3826. doi:10.1039/b204060c

Ariapad, A., Zanjanchi, M. A., & Arvand, M. (2012). Efficient removal of anionic surfactant using partial template-containing MCM-41. Desalination, 284, 142-149. doi:10.1016/j.desal.2011.08.048

Boukoussa, B., Hamacha, R., Morsli, A., & Bengueddach, A. (2017). Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arabian Journal of Chemistry, 10, S2160-S2169. doi:10.1016/j.arabjc.2013.07.049

Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i

Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem