Mostrar el registro sencillo del ítem
dc.contributor.author | Schwanke, Anderson Joel | es_ES |
dc.contributor.author | DÍAZ MORALES, URBANO MANUEL | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Pergher, Sibele | es_ES |
dc.date.accessioned | 2021-01-20T04:32:27Z | |
dc.date.available | 2021-01-20T04:32:27Z | |
dc.date.issued | 2019-02 | es_ES |
dc.identifier.issn | 1387-1811 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159539 | |
dc.description.abstract | [EN] We studied the influence of the ethanol used as a washing solvent for obtaining swollen and pillared MWW topology zeolites with long-range ordering of lamellar structure. The diffractogram results showed that the increased number of washes increases the degree of order of the lamellar structure. Thermogravimetric results showed a considerable removal of the weakly interacting surfactant molecules after the third wash. The washes with ethanol did not remove the surfactant that strongly interacted with the MWW structure. The pillared material after the third wash showed a long-range ordering of the lamellar structure with the surface area of 728 m(2) g(-1), mesopore sizes of 2-4 nm and morphology characteristic of pillared MWW-type zeolites. | es_ES |
dc.description.sponsorship | Anderson Joel Schwanke is grateful the CAPES Foundation and PDSE program (process number 99999.004779/2014-02). Urbano Diaz acknowledges to the Spanish Government (MAT2014-52085-C2-1-P and MAT2017-82288-C2-1-P). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Microporous and Mesoporous Materials | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ethanol extraction | es_ES |
dc.subject | MWW | es_ES |
dc.subject | MCM-22 | es_ES |
dc.subject | Swelling | es_ES |
dc.subject | Pillaring | es_ES |
dc.subject | Hierarchical zeolites | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.micromeso.2018.08.010 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//99999.004779%2F2014-02/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Schwanke, AJ.; Díaz Morales, UM.; Corma Canós, A.; Pergher, S. (2019). The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure. Microporous and Mesoporous Materials. 275:26-30. https://doi.org/10.1016/j.micromeso.2018.08.010 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.micromeso.2018.08.010 | es_ES |
dc.description.upvformatpinicio | 26 | es_ES |
dc.description.upvformatpfin | 30 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 275 | es_ES |
dc.relation.pasarela | S\407678 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n | es_ES |
dc.description.references | IZA, International Zeolite Association, web page http://www.iza-structure.org/. | es_ES |
dc.description.references | Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f | es_ES |
dc.description.references | Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Schwanke, A. J., Pergher, S., Díaz, U., & Corma, A. (2017). The influence of swelling agents molecular dimensions on lamellar morphology of MWW-type zeolites active for fructose conversion. Microporous and Mesoporous Materials, 254, 17-27. doi:10.1016/j.micromeso.2016.11.007 | es_ES |
dc.description.references | Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z | es_ES |
dc.description.references | C.T. Kresge, W.J. Roth, K.G. Simmons, J.C. Vartuli, WO1992011934 A1 patent, 1992. | es_ES |
dc.description.references | Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-x | es_ES |
dc.description.references | Dumitriu, E., Secundo, F., Patarin, J., & Fechete, I. (2003). Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B: Enzymatic, 22(3-4), 119-133. doi:10.1016/s1381-1177(03)00015-8 | es_ES |
dc.description.references | Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006 | es_ES |
dc.description.references | Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711i | es_ES |
dc.description.references | Schwanke, A. J., Díaz, U., Corma, A., & Pergher, S. (2017). Recyclable swelling solutions for friendly preparation of pillared MWW-type zeolites. Microporous and Mesoporous Materials, 253, 91-95. doi:10.1016/j.micromeso.2017.06.045 | es_ES |
dc.description.references | Opanasenko, M. V., Roth, W. J., & Čejka, J. (2016). Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science & Technology, 6(8), 2467-2484. doi:10.1039/c5cy02079d | es_ES |
dc.description.references | González-Rivera, J., Tovar-Rodríguez, J., Bramanti, E., Duce, C., Longo, I., Fratini, E., … Ferrari, C. (2014). Surfactant recovery from mesoporous metal-modified materials (Sn–, Y–, Ce–, Si–MCM-41), by ultrasound assisted ion-exchange extraction and its re-use for a microwave in situ cheap and eco-friendly MCM-41 synthesis. J. Mater. Chem. A, 2(19), 7020-7033. doi:10.1039/c3ta15078j | es_ES |
dc.description.references | Lang, N., & Tuel, A. (2004). A Fast and Efficient Ion-Exchange Procedure To Remove Surfactant Molecules from MCM-41 Materials. Chemistry of Materials, 16(10), 1961-1966. doi:10.1021/cm030633n | es_ES |
dc.description.references | De Ávila, S. G., Silva, L. C. C., & Matos, J. R. (2016). Optimisation of SBA-15 properties using Soxhlet solvent extraction for template removal. Microporous and Mesoporous Materials, 234, 277-286. doi:10.1016/j.micromeso.2016.07.027 | es_ES |
dc.description.references | Prado, A. G. S., & Airoldi, C. (2002). Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas. Journal of Materials Chemistry, 12(12), 3823-3826. doi:10.1039/b204060c | es_ES |
dc.description.references | Ariapad, A., Zanjanchi, M. A., & Arvand, M. (2012). Efficient removal of anionic surfactant using partial template-containing MCM-41. Desalination, 284, 142-149. doi:10.1016/j.desal.2011.08.048 | es_ES |
dc.description.references | Boukoussa, B., Hamacha, R., Morsli, A., & Bengueddach, A. (2017). Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arabian Journal of Chemistry, 10, S2160-S2169. doi:10.1016/j.arabjc.2013.07.049 | es_ES |
dc.description.references | Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i | es_ES |
dc.description.references | Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007 | es_ES |