- -

The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schwanke, Anderson Joel es_ES
dc.contributor.author DÍAZ MORALES, URBANO MANUEL es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Pergher, Sibele es_ES
dc.date.accessioned 2021-01-20T04:32:27Z
dc.date.available 2021-01-20T04:32:27Z
dc.date.issued 2019-02 es_ES
dc.identifier.issn 1387-1811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159539
dc.description.abstract [EN] We studied the influence of the ethanol used as a washing solvent for obtaining swollen and pillared MWW topology zeolites with long-range ordering of lamellar structure. The diffractogram results showed that the increased number of washes increases the degree of order of the lamellar structure. Thermogravimetric results showed a considerable removal of the weakly interacting surfactant molecules after the third wash. The washes with ethanol did not remove the surfactant that strongly interacted with the MWW structure. The pillared material after the third wash showed a long-range ordering of the lamellar structure with the surface area of 728 m(2) g(-1), mesopore sizes of 2-4 nm and morphology characteristic of pillared MWW-type zeolites. es_ES
dc.description.sponsorship Anderson Joel Schwanke is grateful the CAPES Foundation and PDSE program (process number 99999.004779/2014-02). Urbano Diaz acknowledges to the Spanish Government (MAT2014-52085-C2-1-P and MAT2017-82288-C2-1-P). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microporous and Mesoporous Materials es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ethanol extraction es_ES
dc.subject MWW es_ES
dc.subject MCM-22 es_ES
dc.subject Swelling es_ES
dc.subject Pillaring es_ES
dc.subject Hierarchical zeolites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.micromeso.2018.08.010 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//99999.004779%2F2014-02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Schwanke, AJ.; Díaz Morales, UM.; Corma Canós, A.; Pergher, S. (2019). The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure. Microporous and Mesoporous Materials. 275:26-30. https://doi.org/10.1016/j.micromeso.2018.08.010 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.micromeso.2018.08.010 es_ES
dc.description.upvformatpinicio 26 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 275 es_ES
dc.relation.pasarela S\407678 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references IZA, International Zeolite Association, web page http://www.iza-structure.org/. es_ES
dc.description.references Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f es_ES
dc.description.references Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Schwanke, A. J., Pergher, S., Díaz, U., & Corma, A. (2017). The influence of swelling agents molecular dimensions on lamellar morphology of MWW-type zeolites active for fructose conversion. Microporous and Mesoporous Materials, 254, 17-27. doi:10.1016/j.micromeso.2016.11.007 es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z es_ES
dc.description.references C.T. Kresge, W.J. Roth, K.G. Simmons, J.C. Vartuli, WO1992011934 A1 patent, 1992. es_ES
dc.description.references Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-x es_ES
dc.description.references Dumitriu, E., Secundo, F., Patarin, J., & Fechete, I. (2003). Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B: Enzymatic, 22(3-4), 119-133. doi:10.1016/s1381-1177(03)00015-8 es_ES
dc.description.references Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006 es_ES
dc.description.references Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711i es_ES
dc.description.references Schwanke, A. J., Díaz, U., Corma, A., & Pergher, S. (2017). Recyclable swelling solutions for friendly preparation of pillared MWW-type zeolites. Microporous and Mesoporous Materials, 253, 91-95. doi:10.1016/j.micromeso.2017.06.045 es_ES
dc.description.references Opanasenko, M. V., Roth, W. J., & Čejka, J. (2016). Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science & Technology, 6(8), 2467-2484. doi:10.1039/c5cy02079d es_ES
dc.description.references González-Rivera, J., Tovar-Rodríguez, J., Bramanti, E., Duce, C., Longo, I., Fratini, E., … Ferrari, C. (2014). Surfactant recovery from mesoporous metal-modified materials (Sn–, Y–, Ce–, Si–MCM-41), by ultrasound assisted ion-exchange extraction and its re-use for a microwave in situ cheap and eco-friendly MCM-41 synthesis. J. Mater. Chem. A, 2(19), 7020-7033. doi:10.1039/c3ta15078j es_ES
dc.description.references Lang, N., & Tuel, A. (2004). A Fast and Efficient Ion-Exchange Procedure To Remove Surfactant Molecules from MCM-41 Materials. Chemistry of Materials, 16(10), 1961-1966. doi:10.1021/cm030633n es_ES
dc.description.references De Ávila, S. G., Silva, L. C. C., & Matos, J. R. (2016). Optimisation of SBA-15 properties using Soxhlet solvent extraction for template removal. Microporous and Mesoporous Materials, 234, 277-286. doi:10.1016/j.micromeso.2016.07.027 es_ES
dc.description.references Prado, A. G. S., & Airoldi, C. (2002). Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas. Journal of Materials Chemistry, 12(12), 3823-3826. doi:10.1039/b204060c es_ES
dc.description.references Ariapad, A., Zanjanchi, M. A., & Arvand, M. (2012). Efficient removal of anionic surfactant using partial template-containing MCM-41. Desalination, 284, 142-149. doi:10.1016/j.desal.2011.08.048 es_ES
dc.description.references Boukoussa, B., Hamacha, R., Morsli, A., & Bengueddach, A. (2017). Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arabian Journal of Chemistry, 10, S2160-S2169. doi:10.1016/j.arabjc.2013.07.049 es_ES
dc.description.references Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i es_ES
dc.description.references Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem