- -

Estrategia para la verificación de declaraciones PAC a partir de imágenes Sentinel-2 en Navarra

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estrategia para la verificación de declaraciones PAC a partir de imágenes Sentinel-2 en Navarra

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Audícana, M. es_ES
dc.contributor.author López, S. es_ES
dc.contributor.author Sola, I. es_ES
dc.contributor.author Álvarez-Mozos, J. es_ES
dc.coverage.spatial east=-1.7199219529106258; north=42.87197075709014; name=Navarra, Espanya es_ES
dc.date.accessioned 2021-01-20T11:44:49Z
dc.date.available 2021-01-20T11:44:49Z
dc.date.issued 2020-11-27
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/159564
dc.description.abstract [ES] En junio de 2018, la Comisión Europea aprobó una modificación de la Política Agraria Común (PAC) que, entre otros aspectos, plantea el uso de imágenes del programa Copernicus para la verificar que las declaraciones presentadas por los agricultores son correctas. En los últimos años distintas iniciativas investigadoras han tratado de desarrollar herramientas operativas con este fin, entre estas se encuentra el proyecto Interreg-POCTEFA PyrenEOS. En este artículo se expone la estrategia metodológica propuesta en el proyecto PyrenEOS, que se basa en la identificación del cultivo más probable utilizando el algoritmo Random Forests. Como elemento diferenciador, se propone seleccionar la muestra de entrenamiento a partir de una selección de las declaraciones PAC según su NDVI. Además, se definen una serie de reglas para determinar el grado de incertidumbre en la clasificación y los criterios para categorizar cada recinto del mapa de verificación según un código de colores a modo de semáforo, en el que el verde indica recintos con declaración correcta, el rojo recintos con declaración dudosa y el naranja recintos con una incertidumbre alta en la clasificación. Esta estrategia de verificación se aplica a dos Comarcas Agrarias de Navarra, en una campaña agrícola para la que se contó con inspecciones de campo de aproximadamente el 7% de los recintos declarados. Los resultados de esta validación, con fiabilidades globales en la clasificación próximas al 80% cuando se considera el cultivo más probable predicho por el clasificador y al 90% cuando se consideran los dos cultivos más probables, ponen de manifiesto que es posible identificar los recintos correctamente declarados (recintos verdes) con una tasa de error inferior al 1%. Los recintos naranjas y rojos, que requerirán del análisis y juicio posterior de técnicos de inspección, suponen un porcentaje reducido de las declaraciones (~6% de los recintos) y concentran la mayoría de las declaraciones incorrectas. es_ES
dc.description.abstract [EN] In June 2018, the European Commission approved a modification of the Common Agricultural Policy (CAP) that, among other measures, proposed the use of Copernicus data for the verification process of farmers’ declarations. In recent years, several research efforts have been conducted to develop operational tools to accomplish this aim, among this the Interreg-POCTEFA PyrenEOS project. This article describes the methodological strategy proposed in the PyrenEOS project, which is based on the identification of the most probable crop using the Random Forests algorithm. Originally, the strategy builds a training sample from the CAP declarations file based on their NDVI time series. In addition, a series of rules are proposed to establish the level of uncertainty in the classification, and the criteria used to represent each parcel in the verification map with a simple colour coding (traffic light), where green represents correctly declared parcels, red indicates that the declaration is dubious, and orange corresponds to parcels with a high classification uncertainty. This verification strategy has been applied to two Agricultural Regions of Navarre, during an agricultural campaign where valuable field inspections were available, with a sampling intensity of 7% of the declared parcels. The results obtained, report overall accuracies close to 80% when the most probable crop was considered, and 90% when the two most probable crops were considered. This proves it is possible to identify correctly declared parcels (green parcels) with an error below 1%. Orange and red parcels should be considered for further analysis and inspection by technicians from the paying agencies, though they represent a small percentage of declarations (~6% of parcels), and include most of the wrong declarations. es_ES
dc.description.sponsorship Este trabajo se ha financiado con el proyecto PyrenEOS EFA 048/15, cofinanciado al 65% por el Fondo Europeo de Desarrollo Regional (FEDER) a través del programa Interreg V-A España-Francia-Andorra (POCTEFA 2014-2020). Los autores agradecen al Servicio del Organismo Pagador del Departamento de Desarrollo Rural y Medio Ambiente del Gobierno de Navarra la cesión de los ficheros vectoriales de declaraciones e inspecciones PAC utilizadas en el contexto de este trabajo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject CAP (Common Agricultural Policy) es_ES
dc.subject Sentinel-2 monitoring es_ES
dc.subject On The Spot Check (OTSC) es_ES
dc.subject PAC es_ES
dc.subject Monitorización Sentinel-2 es_ES
dc.subject Verificación declaraciones es_ES
dc.subject Inspecciones de campo es_ES
dc.title Estrategia para la verificación de declaraciones PAC a partir de imágenes Sentinel-2 en Navarra es_ES
dc.title.alternative A strategy for the verification of CAP declarations using Sentinel-2 images in Navarre es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2020.14128
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation González-Audícana, M.; López, S.; Sola, I.; Álvarez-Mozos, J. (2020). Estrategia para la verificación de declaraciones PAC a partir de imágenes Sentinel-2 en Navarra. Revista de Teledetección. 0(56):69-88. https://doi.org/10.4995/raet.2020.14128 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2020.14128 es_ES
dc.description.upvformatpinicio 69 es_ES
dc.description.upvformatpfin 88 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 56 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\14128 es_ES
dc.description.references Amitrano, D., Guida, R., Ruello, G., 2019. Multitemporal SAR RGB Processing for Sentinel-1 GRD Products: Methodology and Applications. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 12(5), 1497-1507. https://doi.org/10.1109/JSTARS.2019.2904035 es_ES
dc.description.references Belgiu, M., Csillik, O., 2018. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509-533. https://doi.org/10.1016/j.isprsjprs.2016.01.011 es_ES
dc.description.references Belgiu, M., Dragut, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.rse.2017.10.005 es_ES
dc.description.references Boryan, C., Yang, Z., Mueller R., Craig, M., 2011. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto International, 26(5), 341-358. https://doi.org/10.1080/10106049.2011.562309 es_ES
dc.description.references Breiman, L., 2001. Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 es_ES
dc.description.references Chakhar, A., Ortega-Terol, D., Hernández-López, D., Ballesteros, R., Ortega, J.F., Moreno, M.A., 2020. Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sensing, 12, 1735. https://doi.org/10.3390/rs12111735 es_ES
dc.description.references Chuvieco, E., Huete, A., 2010. Fundamentals of satellite remote sensing. Boca Raton: CRC Press. https://doi.org/10.1201/b18954 es_ES
dc.description.references Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola, L., Rabaute, T., Savinaud, M., Udroiu, C., Valero, S., Bégué, A., Dejoux, J.F., El Harti, A., Ezzahar, J., Kussul, N., Labbassi, K., Lebourgeois, V., Miao, Z., Newby, T., Nyamugama, A., Salh, N., Shelestov, A., Simonneaux, V., Traore, P.S., Traore, S.S., Koetz, B. 2019. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environent, 221, 551-568. https://doi.org/10.1016/j.rse.2018.11.007 es_ES
dc.description.references Devos, W., Kay, S., 2011. LPIS quality inspection: EU requirements and methodology. JRC Technical notes. Ispra: Publications Office of the European Union. es_ES
dc.description.references Devos, W., Lemoine, G., Milenov, P., Fasbender, D., 2018a. Technical guidance on the decision to go for substitution of OTSC by monitoring. EUR 29370 EN. Ispra: Publications Office of the European Union. es_ES
dc.description.references Devos W., Lemoine G., Milenov P., Fasbender D., Loudjani P., Wirnhardt C., Sima A., Griffiths P., 2018b. Second discussion document on the introduction of monitoring to substitute OTSC: rules for processing applications in 2018-2019. EUR 29369 EN. Ispra: Publications Office of the European Union. es_ES
dc.description.references European Court of Auditors, 2016. The Land Parcel Identification System: A useful tool to determine the eligibility of agricultural land - but its management could be further improved. Special report No 25. Luxemburgo: European Court of Auditors. es_ES
dc.description.references Foley, J.A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder, P. K., 2005. Global consequences of land use. Science, 309, 570. https://doi.org/10.1126/science.1111772 es_ES
dc.description.references Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De Bonis, R., Isola, C., Martimort, P., Fernandez, V., 2018. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sensing, 9, 584. https://doi.org/10.3390/rs9060584 es_ES
dc.description.references Hogan, P., 2018. CAP post 2020: the evolution of the policy. NEW MEDIT, 17(2), 1-2. es_ES
dc.description.references Jin, K. H., McCann, M. T., Froustey, E., Unser, M., 2017. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Transactions on Image Processing, 26(9), 4509-4522. https://doi.org/10.1109/TIP.2017.2713099 es_ES
dc.description.references Koetz, B., Defourny, P., Bontemps, S., Bajec, K., Cara, C., de Vendictis, L., Kucera, L., Malcorps, P., Milcinski, G., Nicola, L., Rossi, L., Sciarretta, C., Slacikova, J., Tutunaru, F., Udroiu, C., Zavagli, M., 2019. SEN4CAP Sentinels for CAP monitoring approach. En: Proceedings of the 2019 JRC IACS Workshop, Valladolid, Spain, 10-11 April 2019 es_ES
dc.description.references Koschke, L., Fürst, C., Frank, S., Makeschin, F., 2012. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecological Indicators, 21, 54-66. https://doi.org/10.1016/j.ecolind.2011.12.010 es_ES
dc.description.references Louis, J., Pflug, B., Main-Knorn, M., Debaecker, V., Mueller-Wilm, U., Iannone, R.Q., Cadau, E.G., Boccia, V., Gascon, F., 2019. Sentinel-2 Global Surface Reflectance Level-2A Product generated with SEN2COR. En: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japón, 28 Julio-02 Agosto. pp 8522-8525. https://doi.org/10.1109/IGARSS.2019.8898540 es_ES
dc.description.references Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645-657. https://doi.org/10.1109/TGRS.2016.2612821 es_ES
dc.description.references Maxwell, A. E., Warner, T. A., Fang, F., 2018. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9), 2784-2817‏. https://doi.org/10.1080/01431161.2018.1433343 es_ES
dc.description.references Mellor, A., Boukir, S., Haywood, A., Jones, S., 2015. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 155-168. https://doi.org/10.1016/j.isprsjprs.2015.03.014 es_ES
dc.description.references Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015 es_ES
dc.description.references Orynbaikyzy, A., Gessner, U., Conrad, C., 2019. Crop type classification using a combination of optical and radar remote sensing data: a review. International Journal of Remote Sensing, 40(17), 6553-6595. https://doi.org/10.1080/01431161.2019.1569791 es_ES
dc.description.references Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825−2830. es_ES
dc.description.references Petitjean, F., Inglada, J., Gancarski, P., 2012. Satellite Image Time Series Analysis Under Time Warping. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3081-3095. https://doi.org/10.1109/TGRS.2011.2179050 es_ES
dc.description.references Quinlan, J. R., 1996. Bagging, boosting, and C4.5. En: Proceedings AAAI-96 fourteenth National Conference on Artificial Intelligence. Portland, OR. es_ES
dc.description.references Rizov, M., Pokrivcak, J., Ciaian, P., 2013. CAP Subsidies and Productivity of the EU Farms. Journal of Agricultural Economics, 64(3), 537-557. https://doi.org/10.1111/1477-9552.12030 es_ES
dc.description.references Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., Skakun, S., 2017. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, 5, 1-10. https://doi.org/10.3389/feart.2017.00017 es_ES
dc.description.references Sitokonstantinou, V., Papoutsis, I., Kontoes, C., Arnal, A.L., Andrés, A.P.A., Zurbano, J.A.G., 2018. Scalable parcel-based crop identification scheme using Sentinel-2 data time-series for the monitoring of the common agricultural policy. Remote Sensing, 10, 911. https://doi.org/10.3390/rs10060911 es_ES
dc.description.references Van Tricht, K., Gobin, A., Gilliams, S., Piccard, I., 2018. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sensing, 10, 1642. https://doi.org/10.3390/rs10101642 es_ES
dc.description.references Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.F., Ceschia, E., 2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415-426. https://doi.org/10.1016/j.rse.2017.07.015 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem