Barton, L.L., Northup, D.E. 2011. Microbes at work in nature: biomineralization and microbial weathering. Microbial Ecology, 299-326. https://doi.org/10.1002/9781118015841.ch11
Buchanan, J.M., Stubblebine, W.C. 1962. Externality. Economica, 29(116), 138-154. https://doi.org/10.1057/9780230523210_7
Camacho, A., Borja, C., Valero-Garcés, B., Sahuquillo, M., Cirujano, S., Soria, J.M., Rico, E., De La Hera, A., Santamans, A.C., García De Domingo, A., Chicote, A., Gosálvez, R. 2009. 3140 Aguas oligomesotróficas calcáreas con vegetación de Chara spp. En: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. 47 p.
[+]
Barton, L.L., Northup, D.E. 2011. Microbes at work in nature: biomineralization and microbial weathering. Microbial Ecology, 299-326. https://doi.org/10.1002/9781118015841.ch11
Buchanan, J.M., Stubblebine, W.C. 1962. Externality. Economica, 29(116), 138-154. https://doi.org/10.1057/9780230523210_7
Camacho, A., Borja, C., Valero-Garcés, B., Sahuquillo, M., Cirujano, S., Soria, J.M., Rico, E., De La Hera, A., Santamans, A.C., García De Domingo, A., Chicote, A., Gosálvez, R. 2009. 3140 Aguas oligomesotróficas calcáreas con vegetación de Chara spp. En: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. 47 p.
Consejería de Medio Ambiente y Desarrollo Rural, 2007. Plan de Ordenación de los Recursos Naturales de las Lagunas de Cañada del Hoyo. D. O. C. M. Núm. 63
Casamayor, E.O., Llirós, M., Picazo, A., Barberán, A., Borrego, C.M., Camacho, A. 2012. Contribution of deep dark fixation processes to overall CO2 incorporation and large vertical changes of microbial populations in stratified karstic lakes. Aquatic Sciences, 74(1), 61-75. https://doi.org/10.1007/s00027-011-0196-5
Cirujano, S., García Murillo, P., Meco Molina, A. 2007. Los carófitos ibéricos. Anales del Jardín Botánico de Madrid, 64(1), 87-102. https://doi.org/10.3989/ajbm.2007.v64.i1.57
Dobolyi, E., Herodek, S. 1980. On the mechanism reducing the phosphate concentration in the water of Lake Balaton. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 65(3), 339-343. https://doi.org/10.1002/iroh.19800650303
Galat, D.L., Jacobsen, R.L. 1985. Recurrent aragonite precipitation in saline-alkaline Pyramid Lake, Nevada. Archiv für Hydrobiologie, 105(2), 137-159.
Gleick, P.H. 1993. Water and conflict: Fresh water resources and international security. International security, 18(1), 79-112. https://doi.org/10.2307/2539033
Hamilton, S.K., Bruesewitz, D.A., Horst, G.P., Weed, D.B., Sarnelle, O. 2009. Biogenic calcite-phosphorus precipitation as a negative feedback to lake eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 66(2), 343-350. https://doi.org/10.1139/F09-003
Hammes, F., Verstraete, W. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in environmental science and biotechnology, 1(1), 3-7. https://doi.org/10.1023/A:1015135629155
Homa, E.S., Chapra, S.C. 2011. Modeling the impacts of calcite precipitation on the epilimnion of an ultraoligotrophic, hard-water lake. Ecological modelling, 222(1), 76-90. https://doi.org/10.1016/j.ecolmodel.2010.09.011
Izhitskiy, A.S., Zavialov, P.O., Sapozhnikov, P.V., Kirillin, G.B., Grossart, H.P., Kalinina, O.Y., Zalota, A.K., Goncharenko, I.V., Kurbaniyazov, A.K. 2016. Present state of the Aral Sea: diverging physical and biological characteristics of the residual basins. Scientific reports, 6(1), 1-9. https://doi.org/10.1038/srep23906
Kleiner, J. 1988. Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Research, 22(10), 1259-1265. https://doi.org/10.1016/0043-1354(88)90113-3
Koschel, R., Benndorf, J., Proft, G., Recknagel, F. 1987. Model-assisted evaluation of alternative hypotheses to explain the self-protection mechanism of lakes due to calcite precipitation. Ecological Modelling, 39(1-2), 59-65. https://doi.org/10.1016/0304-3800(87)90013-5
Miracle, M.R., Vicente, E., Pedrós-Alió, C. 1992. Biological studies of Spanish meromictic and stratified karstic lakes. Limnetica, 8, 59-77.
Müller, B., Meyer, J.S., Gächter, R. 2016. Alkalinity regulation in calcium carbonate-buffered lakes. Limnology and Oceanography, 61(1), 341-352. https://doi.org/10.1002/lno.10213
Mullins, H.T. 1998. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology, 26(5), 443-446. https://doi.org/10.1130/0091-7613(1998)026%3C0443:ECCOLC%3E2.3.CO;2
Reddy, M.M. 1995. Carbonate precipitation in Pyramid Lake, Nevada. In Mineral Scale Formation and Inhibition. Boston: Springer. https://doi.org/10.1007/978-1-4899-1400-2_3
Reynolds Jr, R.C. 1978. Polyphenol inhibition of calcite precipitation in Lake Powell 1. Limnology and Oceanography, 23(4), 585-597. https://doi.org/10.4319/lo.1978.23.4.0585
Robertson, D.M., Garn, H.S., Rose, W.J. 2007. Response of calcareous Nagawicka Lake, Wisconsin, to changes in phosphorus loading. Lake and Reservoir Management, 23(3), 298-312. https://doi.org/10.1080/07438140709354018
Rodrigo, M.A., Vicente, E., Miracle, M.R. 1993. Shortterm calcite precipitation in the karstic meromictic Lake La Cruz (Cuenca, Spain). Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 25(2), 711-719. https://doi.org/10.1080/03680770.1992.11900231
Seifan, M., Berenjian, A. 2019. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied microbiology and biotechnology, 103(12), 4693-4708. https://doi.org/10.1007/s00253-019-09861-5
Stabel, H.H. 1986. Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation, and nucleation by algae 1. Limnology and Oceanography, 31(5), 1081-1094. https://doi.org/10.4319/lo.1986.31.5.1081
Strong, A.E., Eadie, B.J. 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes 1. Limnology and Oceanography, 23(5), 877-887. https://doi.org/10.4319/lo.1978.23.5.0877
Vanderploeg, H.A., Eadie, B.J., Liebig, J.R., Tarapchak, S.J., Glover, R.M. 1987. Contribution of calcite to the particle-size spectrum of Lake Michigan seston and its interactions with the plankton. Canadian Journal of Fisheries and Aquatic Sciences, 44(11), 1898-1914. https://doi.org/10.1139/f87-234
Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. https://doi.org/10.1002/2014GL060641
Wiik, E., Bennion, H., Sayer, C.D., Willby, N.J. 2014. Chemical and biological responses of marl lakes to eutrophication. Freshwater Reviews, 6(2), 35-62. https://doi.org/10.1608/FRJ-6.2.630
Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O'Reilly, C.M., Sharma, S. 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1-16. https://doi.org/10.1038/s43017-020-0067-5
Wunder, S. 2015. Revisiting the concept of payments for environmental services. Ecological economics, 117, 234-243. https://doi.org/10.1016/j.ecolecon.2014.08.016
[-]