Mostrar el registro sencillo del ítem
dc.contributor.author | Ruiz, M. | es_ES |
dc.contributor.author | Morales, S. | es_ES |
dc.contributor.author | Soria, J.M. | es_ES |
dc.coverage.spatial | east=-1.8737593; north=39.9877975; name=Laguna de la Cruz, Cuenca, Espanya | es_ES |
dc.date.accessioned | 2021-01-20T12:25:39Z | |
dc.date.available | 2021-01-20T12:25:39Z | |
dc.date.issued | 2020-11-27 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/159570 | |
dc.description.abstract | [EN] In the present study, a five-year follow-up was performed by remote sensing of the calcium carbonate precipitation in La Gitana karstic lake also known as La Cruz (located on the province of Cuenca, Spain). The important role that calcium carbonate precipitation plays in the ecology of the lake is well known for its influence on the vertical migrations of phytoplankton, the concentration of bioavailable phosphorus and, therefore, the eutrophication and quality of the waters. Whiting take place between the months of July and August, and it can be studied at this time through its optical properties, with the main objective of offering updated data on a phenomenon traditionally studied and establishing possible relationships between abiotic factors such as temperature and/or rainfall. The atmospheric temperature data collected by the meteorological station suggest a possible relationship between the appearance of the white phenomenon and a pulse of previous maximum temperatures. On the other hand, no apparent relationship was found between rainfall and water whiting. | es_ES |
dc.description.abstract | [ES] En el presente estudio se realizó un seguimiento de cinco años por teledetección del fenómeno de la precipitación de carbonato cálcico en la laguna kárstica de la Gitana o de la Cruz (situada en la provincia de Cuenca, España). Se conoce el importante papel que desempeña la precipitación del carbonato cálcico en la ecología del lago ya que influye en las migraciones verticales del fitoplancton, en la concentración de fósforo biodisponible y por ende, en la eutrofización y calidad de las aguas. El blanqueamiento sucede entre los meses de julio y agosto, pudiendo estudiarse en estas fechas a través de sus propiedades ópticas, con el objetivo principal de ofrecer datos actualizados de un fenómeno tradicionalmente estudiado y establecer posibles relaciones entre factores abióticos como la temperatura y/o precipitaciones. Los datos de temperatura del aire, recogidos por la estación meteorológica de Cuenca, sugieren una posible relación entre la aparición del fenómeno blanco y un pulso de temperaturas máximas previas. Por otra parte, no se encontró relación aparente entre las precipitaciones y el blanqueamiento del agua. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Calcium carbonate | es_ES |
dc.subject | Karst | es_ES |
dc.subject | Precipitation | es_ES |
dc.subject | Remote sensing | es_ES |
dc.subject | Whiting | es_ES |
dc.subject | Carbonato cálcico | es_ES |
dc.subject | Fenómeno blanco | es_ES |
dc.subject | Precipitación | es_ES |
dc.subject | Teledetección | es_ES |
dc.title | Seguimiento del fenómeno blanco de la laguna de la Cruz (Cuenca, España) | es_ES |
dc.title.alternative | Monitoring the whiting phenomenon in Lake La Cruz (Cuenca, Spain) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2020.14137 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ruiz, M.; Morales, S.; Soria, J. (2020). Seguimiento del fenómeno blanco de la laguna de la Cruz (Cuenca, España). Revista de Teledetección. 0(56):157-173. https://doi.org/10.4995/raet.2020.14137 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2020.14137 | es_ES |
dc.description.upvformatpinicio | 157 | es_ES |
dc.description.upvformatpfin | 173 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 0 | es_ES |
dc.description.issue | 56 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\14137 | es_ES |
dc.description.references | Barton, L.L., Northup, D.E. 2011. Microbes at work in nature: biomineralization and microbial weathering. Microbial Ecology, 299-326. https://doi.org/10.1002/9781118015841.ch11 | es_ES |
dc.description.references | Buchanan, J.M., Stubblebine, W.C. 1962. Externality. Economica, 29(116), 138-154. https://doi.org/10.1057/9780230523210_7 | es_ES |
dc.description.references | Camacho, A., Borja, C., Valero-Garcés, B., Sahuquillo, M., Cirujano, S., Soria, J.M., Rico, E., De La Hera, A., Santamans, A.C., García De Domingo, A., Chicote, A., Gosálvez, R. 2009. 3140 Aguas oligomesotróficas calcáreas con vegetación de Chara spp. En: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. 47 p. | es_ES |
dc.description.references | Consejería de Medio Ambiente y Desarrollo Rural, 2007. Plan de Ordenación de los Recursos Naturales de las Lagunas de Cañada del Hoyo. D. O. C. M. Núm. 63 | es_ES |
dc.description.references | Casamayor, E.O., Llirós, M., Picazo, A., Barberán, A., Borrego, C.M., Camacho, A. 2012. Contribution of deep dark fixation processes to overall CO2 incorporation and large vertical changes of microbial populations in stratified karstic lakes. Aquatic Sciences, 74(1), 61-75. https://doi.org/10.1007/s00027-011-0196-5 | es_ES |
dc.description.references | Cirujano, S., García Murillo, P., Meco Molina, A. 2007. Los carófitos ibéricos. Anales del Jardín Botánico de Madrid, 64(1), 87-102. https://doi.org/10.3989/ajbm.2007.v64.i1.57 | es_ES |
dc.description.references | Dobolyi, E., Herodek, S. 1980. On the mechanism reducing the phosphate concentration in the water of Lake Balaton. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 65(3), 339-343. https://doi.org/10.1002/iroh.19800650303 | es_ES |
dc.description.references | Galat, D.L., Jacobsen, R.L. 1985. Recurrent aragonite precipitation in saline-alkaline Pyramid Lake, Nevada. Archiv für Hydrobiologie, 105(2), 137-159. | es_ES |
dc.description.references | Gleick, P.H. 1993. Water and conflict: Fresh water resources and international security. International security, 18(1), 79-112. https://doi.org/10.2307/2539033 | es_ES |
dc.description.references | Hamilton, S.K., Bruesewitz, D.A., Horst, G.P., Weed, D.B., Sarnelle, O. 2009. Biogenic calcite-phosphorus precipitation as a negative feedback to lake eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 66(2), 343-350. https://doi.org/10.1139/F09-003 | es_ES |
dc.description.references | Hammes, F., Verstraete, W. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in environmental science and biotechnology, 1(1), 3-7. https://doi.org/10.1023/A:1015135629155 | es_ES |
dc.description.references | Homa, E.S., Chapra, S.C. 2011. Modeling the impacts of calcite precipitation on the epilimnion of an ultraoligotrophic, hard-water lake. Ecological modelling, 222(1), 76-90. https://doi.org/10.1016/j.ecolmodel.2010.09.011 | es_ES |
dc.description.references | Izhitskiy, A.S., Zavialov, P.O., Sapozhnikov, P.V., Kirillin, G.B., Grossart, H.P., Kalinina, O.Y., Zalota, A.K., Goncharenko, I.V., Kurbaniyazov, A.K. 2016. Present state of the Aral Sea: diverging physical and biological characteristics of the residual basins. Scientific reports, 6(1), 1-9. https://doi.org/10.1038/srep23906 | es_ES |
dc.description.references | Kleiner, J. 1988. Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Research, 22(10), 1259-1265. https://doi.org/10.1016/0043-1354(88)90113-3 | es_ES |
dc.description.references | Koschel, R., Benndorf, J., Proft, G., Recknagel, F. 1987. Model-assisted evaluation of alternative hypotheses to explain the self-protection mechanism of lakes due to calcite precipitation. Ecological Modelling, 39(1-2), 59-65. https://doi.org/10.1016/0304-3800(87)90013-5 | es_ES |
dc.description.references | Miracle, M.R., Vicente, E., Pedrós-Alió, C. 1992. Biological studies of Spanish meromictic and stratified karstic lakes. Limnetica, 8, 59-77. | es_ES |
dc.description.references | Müller, B., Meyer, J.S., Gächter, R. 2016. Alkalinity regulation in calcium carbonate-buffered lakes. Limnology and Oceanography, 61(1), 341-352. https://doi.org/10.1002/lno.10213 | es_ES |
dc.description.references | Mullins, H.T. 1998. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology, 26(5), 443-446. https://doi.org/10.1130/0091-7613(1998)026%3C0443:ECCOLC%3E2.3.CO;2 | es_ES |
dc.description.references | Reddy, M.M. 1995. Carbonate precipitation in Pyramid Lake, Nevada. In Mineral Scale Formation and Inhibition. Boston: Springer. https://doi.org/10.1007/978-1-4899-1400-2_3 | es_ES |
dc.description.references | Reynolds Jr, R.C. 1978. Polyphenol inhibition of calcite precipitation in Lake Powell 1. Limnology and Oceanography, 23(4), 585-597. https://doi.org/10.4319/lo.1978.23.4.0585 | es_ES |
dc.description.references | Robertson, D.M., Garn, H.S., Rose, W.J. 2007. Response of calcareous Nagawicka Lake, Wisconsin, to changes in phosphorus loading. Lake and Reservoir Management, 23(3), 298-312. https://doi.org/10.1080/07438140709354018 | es_ES |
dc.description.references | Rodrigo, M.A., Vicente, E., Miracle, M.R. 1993. Shortterm calcite precipitation in the karstic meromictic Lake La Cruz (Cuenca, Spain). Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 25(2), 711-719. https://doi.org/10.1080/03680770.1992.11900231 | es_ES |
dc.description.references | Seifan, M., Berenjian, A. 2019. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied microbiology and biotechnology, 103(12), 4693-4708. https://doi.org/10.1007/s00253-019-09861-5 | es_ES |
dc.description.references | Stabel, H.H. 1986. Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation, and nucleation by algae 1. Limnology and Oceanography, 31(5), 1081-1094. https://doi.org/10.4319/lo.1986.31.5.1081 | es_ES |
dc.description.references | Strong, A.E., Eadie, B.J. 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes 1. Limnology and Oceanography, 23(5), 877-887. https://doi.org/10.4319/lo.1978.23.5.0877 | es_ES |
dc.description.references | Vanderploeg, H.A., Eadie, B.J., Liebig, J.R., Tarapchak, S.J., Glover, R.M. 1987. Contribution of calcite to the particle-size spectrum of Lake Michigan seston and its interactions with the plankton. Canadian Journal of Fisheries and Aquatic Sciences, 44(11), 1898-1914. https://doi.org/10.1139/f87-234 | es_ES |
dc.description.references | Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. https://doi.org/10.1002/2014GL060641 | es_ES |
dc.description.references | Wiik, E., Bennion, H., Sayer, C.D., Willby, N.J. 2014. Chemical and biological responses of marl lakes to eutrophication. Freshwater Reviews, 6(2), 35-62. https://doi.org/10.1608/FRJ-6.2.630 | es_ES |
dc.description.references | Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O'Reilly, C.M., Sharma, S. 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1-16. https://doi.org/10.1038/s43017-020-0067-5 | es_ES |
dc.description.references | Wunder, S. 2015. Revisiting the concept of payments for environmental services. Ecological economics, 117, 234-243. https://doi.org/10.1016/j.ecolecon.2014.08.016 | es_ES |