- -

A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical

Show full item record

Rodriguez-Muniz, GM.; Miranda Alonso, MÁ.; Marín García, ML. (2019). A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical. Molecules. 24(2):1-9. https://doi.org/10.3390/molecules24020234

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159600

Files in this item

Item Metadata

Title: A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical
Author: Rodriguez-Muniz, Gemma M. Miranda Alonso, Miguel Ángel Marín García, Mª Luisa
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Reactive oxygen species (ROS) can provoke damage to cells, where their concentrations are regulated by antioxidants. As the hydroxyl radical (center dot OH) is the most oxidizing ROS, we have focused our attention on ...[+]
Subjects: Antioxidants , Laser flash photolysis , Spirits , Transient absorption , Wine
Copyrigths: Reconocimiento (by)
Source:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules24020234
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/molecules24020234
Project ID:
MINECO/SVP-2016-0683
GENERALITAT VALENCIANA/PROMETEOII/2013/005
Thanks:
This research was funded by Spanish Government (Grant SEV-2016-0683) and Generalitat Valenciana (Prometeo Program).
Type: Artículo

References

Nathan, C., & Ding, A. (2010). SnapShot: Reactive Oxygen Intermediates (ROI). Cell, 140(6), 951-951.e2. doi:10.1016/j.cell.2010.03.008

Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535-543. doi:10.1006/abbi.1993.1074

Treml, J., & Šmejkal, K. (2016). Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720-738. doi:10.1111/1541-4337.12204 [+]
Nathan, C., & Ding, A. (2010). SnapShot: Reactive Oxygen Intermediates (ROI). Cell, 140(6), 951-951.e2. doi:10.1016/j.cell.2010.03.008

Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535-543. doi:10.1006/abbi.1993.1074

Treml, J., & Šmejkal, K. (2016). Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720-738. doi:10.1111/1541-4337.12204

Rodriguez-Muñiz, G. M., Gomis, J., Arques, A., Amat, A. M., Marin, M. L., & Miranda, M. A. (2014). Hydroxyl Radical as an Unlikely Key Intermediate in the Photodegradation of Emerging Pollutants. Photochemistry and Photobiology, 90(6), 1467-1469. doi:10.1111/php.12325

Chen, J., Pehkonen, S. O., & Lin, C.-J. (2003). Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research, 37(10), 2496-2504. doi:10.1016/s0043-1354(03)00039-3

Finley, J. W., Kong, A.-N., Hintze, K. J., Jeffery, E. H., Ji, L. L., & Lei, X. G. (2011). Antioxidants in Foods: State of the Science Important to the Food Industry. Journal of Agricultural and Food Chemistry, 59(13), 6837-6846. doi:10.1021/jf2013875

BEAL, M. F. (2006). Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s Disease. Annals of the New York Academy of Sciences, 991(1), 120-131. doi:10.1111/j.1749-6632.2003.tb07470.x

Čolak, E. (2008). New Markers of Oxidative Damage to Macromolecules. Journal of Medical Biochemistry, 27(1), 1-16. doi:10.2478/v10011-007-0049-x

Adadi, P., Barakova, N. V., & Krivoshapkina, E. F. (2018). Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. Journal of Agricultural and Food Chemistry, 66(24), 5925-5947. doi:10.1021/acs.jafc.8b01407

Huang, D., Ou, B., & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. doi:10.1021/jf030723c

Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57(5), 1655-1666. doi:10.1021/jf803537k

SITHISARN, P., CARLSEN, C., ANDERSEN, M., GRITSANAPAN, W., & SKIBSTED, L. (2007). Antioxidative effects of leaves from Azadirachta species of different provenience. Food Chemistry, 104(4), 1539-1549. doi:10.1016/j.foodchem.2007.02.033

Song, L.-L., Liang, R., Li, D.-D., Xing, Y.-D., Han, R.-M., Zhang, J.-P., & Skibsted, L. H. (2011). β-Carotene Radical Cation Addition to Green Tea Polyphenols. Mechanism of Antioxidant Antagonism in Peroxidizing Liposomes. Journal of Agricultural and Food Chemistry, 59(23), 12643-12651. doi:10.1021/jf2030456

Xu, M., Jin, Z., Ohm, J.-B., Schwarz, P., Rao, J., & Chen, B. (2018). Improvement of the Antioxidative Activity of Soluble Phenolic Compounds in Chickpea by Germination. Journal of Agricultural and Food Chemistry, 66(24), 6179-6187. doi:10.1021/acs.jafc.8b02208

Yang, H., Xue, X., Li, H., Apandi, S. N., Tay-Chan, S. C., Ong, S. P., & Tian, E. F. (2018). The relative antioxidant activity and steric structure of green tea catechins – A kinetic approach. Food Chemistry, 257, 399-405. doi:10.1016/j.foodchem.2018.03.043

Yilmaz, Y., & Toledo, R. T. (2003). Major Flavonoids in Grape Seeds and Skins:  Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food Chemistry, 52(2), 255-260. doi:10.1021/jf030117h

Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339(8808), 1523-1526. doi:10.1016/0140-6736(92)91277-f

Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, J. E. (1994). Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry, 42(1), 64-69. doi:10.1021/jf00037a010

MacDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacityin vitro: a review. Journal of the Science of Food and Agriculture, 86(13), 2046-2056. doi:10.1002/jsfa.2603

Niki, E., & Noguchi, N. (2000). Evaluation of Antioxidant Capacity. What Capacity is being Measured by Which Method? IUBMB Life, 50(4), 323-329. doi:10.1080/15216540051081119

DeMatteo, M. P., Poole, J. S., Shi, X., Sachdeva, R., Hatcher, P. G., Hadad, C. M., & Platz, M. S. (2005). On the Electrophilicity of Hydroxyl Radical:  A Laser Flash Photolysis and Computational Study. Journal of the American Chemical Society, 127(19), 7094-7109. doi:10.1021/ja043692q

Poole, J. S., Shi, X., Hadad, C. M., & Platz, M. S. (2005). Reaction of Hydroxyl Radical with Aromatic Hydrocarbons in Nonaqueous Solutions:  A Laser Flash Photolysis Study in Acetonitrile. The Journal of Physical Chemistry A, 109(11), 2547-2551. doi:10.1021/jp0452150

Marin, M. L., Lhiaubet-Vallet, V., Santos-Juanes, L., Soler, J., Gomis, J., Arques, A., … Miranda, M. A. (2011). A photophysical approach to investigate the photooxidation mechanism of pesticides: Hydroxyl radical versus electron transfer. Applied Catalysis B: Environmental, 103(1-2), 48-53. doi:10.1016/j.apcatb.2011.01.007

Rodríguez-Muñiz, G. M., Marin, M. L., Lhiaubet-Vallet, V., & Miranda, M. A. (2012). Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium. Chemistry - A European Journal, 18(26), 8024-8027. doi:10.1002/chem.201201090

Mitroka, S., Zimmeck, S., Troya, D., & Tanko, J. M. (2010). How Solvent Modulates Hydroxyl Radical Reactivity in Hydrogen Atom Abstractions. Journal of the American Chemical Society, 132(9), 2907-2913. doi:10.1021/ja903856t

Serafini, M., Maiani, G., & Ferro-Luzzi, A. (1998). Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans. The Journal of Nutrition, 128(6), 1003-1007. doi:10.1093/jn/128.6.1003

Arnous, A., Makris, D. P., & Kefalas, P. (2001). Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines. Journal of Agricultural and Food Chemistry, 49(12), 5736-5742. doi:10.1021/jf010827s

Frankel, E. ., German, J. ., Kinsella, J. ., Parks, E., & Kanner, J. (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, 341(8843), 454-457. doi:10.1016/0140-6736(93)90206-v

Ghiselli, A., Nardini, M., Baldi, A., & Scaccini, C. (1998). Antioxidant Activity of Different Phenolic Fractions Separated from an Italian Red Wine. Journal of Agricultural and Food Chemistry, 46(2), 361-367. doi:10.1021/jf970486b

Rice-Evans, C. (2001). Flavonoid Antioxidants. Current Medicinal Chemistry, 8(7), 797-807. doi:10.2174/0929867013373011

Wadsworth, T. L., & Koop, D. R. (1999). Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochemical Pharmacology, 57(8), 941-949. doi:10.1016/s0006-2952(99)00002-7

Pace-Asciak, C. R., Hahn, S., Diamandis, E. P., Soleas, G., & Goldberg, D. M. (1995). The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clinica Chimica Acta, 235(2), 207-219. doi:10.1016/0009-8981(95)06045-1

Schneider, Y., Vincent, F., Duranton, B., Badolo, L., Gossé, F., Bergmann, C., … Raul, F. (2000). Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Letters, 158(1), 85-91. doi:10.1016/s0304-3835(00)00511-5

Li, D.-D., Han, R.-M., Liang, R., Chen, C.-H., Lai, W., Zhang, J.-P., & Skibsted, L. H. (2012). Hydroxyl Radical Reaction with trans-Resveratrol: Initial Carbon Radical Adduct Formation Followed by Rearrangement to Phenoxyl Radical. The Journal of Physical Chemistry B, 116(24), 7154-7161. doi:10.1021/jp3033337

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record