Nathan, C., & Ding, A. (2010). SnapShot: Reactive Oxygen Intermediates (ROI). Cell, 140(6), 951-951.e2. doi:10.1016/j.cell.2010.03.008
Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535-543. doi:10.1006/abbi.1993.1074
Treml, J., & Šmejkal, K. (2016). Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720-738. doi:10.1111/1541-4337.12204
[+]
Nathan, C., & Ding, A. (2010). SnapShot: Reactive Oxygen Intermediates (ROI). Cell, 140(6), 951-951.e2. doi:10.1016/j.cell.2010.03.008
Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535-543. doi:10.1006/abbi.1993.1074
Treml, J., & Šmejkal, K. (2016). Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720-738. doi:10.1111/1541-4337.12204
Rodriguez-Muñiz, G. M., Gomis, J., Arques, A., Amat, A. M., Marin, M. L., & Miranda, M. A. (2014). Hydroxyl Radical as an Unlikely Key Intermediate in the Photodegradation of Emerging Pollutants. Photochemistry and Photobiology, 90(6), 1467-1469. doi:10.1111/php.12325
Chen, J., Pehkonen, S. O., & Lin, C.-J. (2003). Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research, 37(10), 2496-2504. doi:10.1016/s0043-1354(03)00039-3
Finley, J. W., Kong, A.-N., Hintze, K. J., Jeffery, E. H., Ji, L. L., & Lei, X. G. (2011). Antioxidants in Foods: State of the Science Important to the Food Industry. Journal of Agricultural and Food Chemistry, 59(13), 6837-6846. doi:10.1021/jf2013875
BEAL, M. F. (2006). Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s Disease. Annals of the New York Academy of Sciences, 991(1), 120-131. doi:10.1111/j.1749-6632.2003.tb07470.x
Čolak, E. (2008). New Markers of Oxidative Damage to Macromolecules. Journal of Medical Biochemistry, 27(1), 1-16. doi:10.2478/v10011-007-0049-x
Adadi, P., Barakova, N. V., & Krivoshapkina, E. F. (2018). Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. Journal of Agricultural and Food Chemistry, 66(24), 5925-5947. doi:10.1021/acs.jafc.8b01407
Huang, D., Ou, B., & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. doi:10.1021/jf030723c
Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57(5), 1655-1666. doi:10.1021/jf803537k
SITHISARN, P., CARLSEN, C., ANDERSEN, M., GRITSANAPAN, W., & SKIBSTED, L. (2007). Antioxidative effects of leaves from Azadirachta species of different provenience. Food Chemistry, 104(4), 1539-1549. doi:10.1016/j.foodchem.2007.02.033
Song, L.-L., Liang, R., Li, D.-D., Xing, Y.-D., Han, R.-M., Zhang, J.-P., & Skibsted, L. H. (2011). β-Carotene Radical Cation Addition to Green Tea Polyphenols. Mechanism of Antioxidant Antagonism in Peroxidizing Liposomes. Journal of Agricultural and Food Chemistry, 59(23), 12643-12651. doi:10.1021/jf2030456
Xu, M., Jin, Z., Ohm, J.-B., Schwarz, P., Rao, J., & Chen, B. (2018). Improvement of the Antioxidative Activity of Soluble Phenolic Compounds in Chickpea by Germination. Journal of Agricultural and Food Chemistry, 66(24), 6179-6187. doi:10.1021/acs.jafc.8b02208
Yang, H., Xue, X., Li, H., Apandi, S. N., Tay-Chan, S. C., Ong, S. P., & Tian, E. F. (2018). The relative antioxidant activity and steric structure of green tea catechins – A kinetic approach. Food Chemistry, 257, 399-405. doi:10.1016/j.foodchem.2018.03.043
Yilmaz, Y., & Toledo, R. T. (2003). Major Flavonoids in Grape Seeds and Skins: Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food Chemistry, 52(2), 255-260. doi:10.1021/jf030117h
Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339(8808), 1523-1526. doi:10.1016/0140-6736(92)91277-f
Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, J. E. (1994). Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry, 42(1), 64-69. doi:10.1021/jf00037a010
MacDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacityin vitro: a review. Journal of the Science of Food and Agriculture, 86(13), 2046-2056. doi:10.1002/jsfa.2603
Niki, E., & Noguchi, N. (2000). Evaluation of Antioxidant Capacity. What Capacity is being Measured by Which Method? IUBMB Life, 50(4), 323-329. doi:10.1080/15216540051081119
DeMatteo, M. P., Poole, J. S., Shi, X., Sachdeva, R., Hatcher, P. G., Hadad, C. M., & Platz, M. S. (2005). On the Electrophilicity of Hydroxyl Radical: A Laser Flash Photolysis and Computational Study. Journal of the American Chemical Society, 127(19), 7094-7109. doi:10.1021/ja043692q
Poole, J. S., Shi, X., Hadad, C. M., & Platz, M. S. (2005). Reaction of Hydroxyl Radical with Aromatic Hydrocarbons in Nonaqueous Solutions: A Laser Flash Photolysis Study in Acetonitrile. The Journal of Physical Chemistry A, 109(11), 2547-2551. doi:10.1021/jp0452150
Marin, M. L., Lhiaubet-Vallet, V., Santos-Juanes, L., Soler, J., Gomis, J., Arques, A., … Miranda, M. A. (2011). A photophysical approach to investigate the photooxidation mechanism of pesticides: Hydroxyl radical versus electron transfer. Applied Catalysis B: Environmental, 103(1-2), 48-53. doi:10.1016/j.apcatb.2011.01.007
Rodríguez-Muñiz, G. M., Marin, M. L., Lhiaubet-Vallet, V., & Miranda, M. A. (2012). Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium. Chemistry - A European Journal, 18(26), 8024-8027. doi:10.1002/chem.201201090
Mitroka, S., Zimmeck, S., Troya, D., & Tanko, J. M. (2010). How Solvent Modulates Hydroxyl Radical Reactivity in Hydrogen Atom Abstractions. Journal of the American Chemical Society, 132(9), 2907-2913. doi:10.1021/ja903856t
Serafini, M., Maiani, G., & Ferro-Luzzi, A. (1998). Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans. The Journal of Nutrition, 128(6), 1003-1007. doi:10.1093/jn/128.6.1003
Arnous, A., Makris, D. P., & Kefalas, P. (2001). Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines. Journal of Agricultural and Food Chemistry, 49(12), 5736-5742. doi:10.1021/jf010827s
Frankel, E. ., German, J. ., Kinsella, J. ., Parks, E., & Kanner, J. (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, 341(8843), 454-457. doi:10.1016/0140-6736(93)90206-v
Ghiselli, A., Nardini, M., Baldi, A., & Scaccini, C. (1998). Antioxidant Activity of Different Phenolic Fractions Separated from an Italian Red Wine. Journal of Agricultural and Food Chemistry, 46(2), 361-367. doi:10.1021/jf970486b
Rice-Evans, C. (2001). Flavonoid Antioxidants. Current Medicinal Chemistry, 8(7), 797-807. doi:10.2174/0929867013373011
Wadsworth, T. L., & Koop, D. R. (1999). Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochemical Pharmacology, 57(8), 941-949. doi:10.1016/s0006-2952(99)00002-7
Pace-Asciak, C. R., Hahn, S., Diamandis, E. P., Soleas, G., & Goldberg, D. M. (1995). The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clinica Chimica Acta, 235(2), 207-219. doi:10.1016/0009-8981(95)06045-1
Schneider, Y., Vincent, F., Duranton, B., Badolo, L., Gossé, F., Bergmann, C., … Raul, F. (2000). Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Letters, 158(1), 85-91. doi:10.1016/s0304-3835(00)00511-5
Li, D.-D., Han, R.-M., Liang, R., Chen, C.-H., Lai, W., Zhang, J.-P., & Skibsted, L. H. (2012). Hydroxyl Radical Reaction with trans-Resveratrol: Initial Carbon Radical Adduct Formation Followed by Rearrangement to Phenoxyl Radical. The Journal of Physical Chemistry B, 116(24), 7154-7161. doi:10.1021/jp3033337
[-]