- -

A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodriguez-Muniz, Gemma M. es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.date.accessioned 2021-01-21T04:31:46Z
dc.date.available 2021-01-21T04:31:46Z
dc.date.issued 2019-01-02 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159600
dc.description.abstract [EN] Reactive oxygen species (ROS) can provoke damage to cells, where their concentrations are regulated by antioxidants. As the hydroxyl radical (center dot OH) is the most oxidizing ROS, we have focused our attention on the use of a mechanistically based time-resolved methodology, such as laser flash photolysis, to determine the relative reactivity of alcoholic beverages towards center dot OH as an indicator of their antioxidant potential. The selected drinks were of two different origins: (i) those derived from grapes such as red wine, white wine, white vermouth, marc and brandy and (ii) spirits not derived from grapes: triple sec, gin, whisky, and rum. Initially, we determined the quenching rate constant of ethanol with center dot OH and then we explored the reactivity of the different beverages, which was higher than expected based on their alcoholic content. This can be attributed to the presence of antioxidants and was especially remarkable for the grape-derived drinks. es_ES
dc.description.sponsorship This research was funded by Spanish Government (Grant SEV-2016-0683) and Generalitat Valenciana (Prometeo Program). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Antioxidants es_ES
dc.subject Laser flash photolysis es_ES
dc.subject Spirits es_ES
dc.subject Transient absorption es_ES
dc.subject Wine es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules24020234 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Rodriguez-Muniz, GM.; Miranda Alonso, MÁ.; Marín García, ML. (2019). A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical. Molecules. 24(2):1-9. https://doi.org/10.3390/molecules24020234 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules24020234 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 30634584 es_ES
dc.identifier.pmcid PMC6359750 es_ES
dc.relation.pasarela S\404295 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Nathan, C., & Ding, A. (2010). SnapShot: Reactive Oxygen Intermediates (ROI). Cell, 140(6), 951-951.e2. doi:10.1016/j.cell.2010.03.008 es_ES
dc.description.references Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535-543. doi:10.1006/abbi.1993.1074 es_ES
dc.description.references Treml, J., & Šmejkal, K. (2016). Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720-738. doi:10.1111/1541-4337.12204 es_ES
dc.description.references Rodriguez-Muñiz, G. M., Gomis, J., Arques, A., Amat, A. M., Marin, M. L., & Miranda, M. A. (2014). Hydroxyl Radical as an Unlikely Key Intermediate in the Photodegradation of Emerging Pollutants. Photochemistry and Photobiology, 90(6), 1467-1469. doi:10.1111/php.12325 es_ES
dc.description.references Chen, J., Pehkonen, S. O., & Lin, C.-J. (2003). Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research, 37(10), 2496-2504. doi:10.1016/s0043-1354(03)00039-3 es_ES
dc.description.references Finley, J. W., Kong, A.-N., Hintze, K. J., Jeffery, E. H., Ji, L. L., & Lei, X. G. (2011). Antioxidants in Foods: State of the Science Important to the Food Industry. Journal of Agricultural and Food Chemistry, 59(13), 6837-6846. doi:10.1021/jf2013875 es_ES
dc.description.references BEAL, M. F. (2006). Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s Disease. Annals of the New York Academy of Sciences, 991(1), 120-131. doi:10.1111/j.1749-6632.2003.tb07470.x es_ES
dc.description.references Čolak, E. (2008). New Markers of Oxidative Damage to Macromolecules. Journal of Medical Biochemistry, 27(1), 1-16. doi:10.2478/v10011-007-0049-x es_ES
dc.description.references Adadi, P., Barakova, N. V., & Krivoshapkina, E. F. (2018). Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. Journal of Agricultural and Food Chemistry, 66(24), 5925-5947. doi:10.1021/acs.jafc.8b01407 es_ES
dc.description.references Huang, D., Ou, B., & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. doi:10.1021/jf030723c es_ES
dc.description.references Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57(5), 1655-1666. doi:10.1021/jf803537k es_ES
dc.description.references SITHISARN, P., CARLSEN, C., ANDERSEN, M., GRITSANAPAN, W., & SKIBSTED, L. (2007). Antioxidative effects of leaves from Azadirachta species of different provenience. Food Chemistry, 104(4), 1539-1549. doi:10.1016/j.foodchem.2007.02.033 es_ES
dc.description.references Song, L.-L., Liang, R., Li, D.-D., Xing, Y.-D., Han, R.-M., Zhang, J.-P., & Skibsted, L. H. (2011). β-Carotene Radical Cation Addition to Green Tea Polyphenols. Mechanism of Antioxidant Antagonism in Peroxidizing Liposomes. Journal of Agricultural and Food Chemistry, 59(23), 12643-12651. doi:10.1021/jf2030456 es_ES
dc.description.references Xu, M., Jin, Z., Ohm, J.-B., Schwarz, P., Rao, J., & Chen, B. (2018). Improvement of the Antioxidative Activity of Soluble Phenolic Compounds in Chickpea by Germination. Journal of Agricultural and Food Chemistry, 66(24), 6179-6187. doi:10.1021/acs.jafc.8b02208 es_ES
dc.description.references Yang, H., Xue, X., Li, H., Apandi, S. N., Tay-Chan, S. C., Ong, S. P., & Tian, E. F. (2018). The relative antioxidant activity and steric structure of green tea catechins – A kinetic approach. Food Chemistry, 257, 399-405. doi:10.1016/j.foodchem.2018.03.043 es_ES
dc.description.references Yilmaz, Y., & Toledo, R. T. (2003). Major Flavonoids in Grape Seeds and Skins:  Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food Chemistry, 52(2), 255-260. doi:10.1021/jf030117h es_ES
dc.description.references Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339(8808), 1523-1526. doi:10.1016/0140-6736(92)91277-f es_ES
dc.description.references Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, J. E. (1994). Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry, 42(1), 64-69. doi:10.1021/jf00037a010 es_ES
dc.description.references MacDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacityin vitro: a review. Journal of the Science of Food and Agriculture, 86(13), 2046-2056. doi:10.1002/jsfa.2603 es_ES
dc.description.references Niki, E., & Noguchi, N. (2000). Evaluation of Antioxidant Capacity. What Capacity is being Measured by Which Method? IUBMB Life, 50(4), 323-329. doi:10.1080/15216540051081119 es_ES
dc.description.references DeMatteo, M. P., Poole, J. S., Shi, X., Sachdeva, R., Hatcher, P. G., Hadad, C. M., & Platz, M. S. (2005). On the Electrophilicity of Hydroxyl Radical:  A Laser Flash Photolysis and Computational Study. Journal of the American Chemical Society, 127(19), 7094-7109. doi:10.1021/ja043692q es_ES
dc.description.references Poole, J. S., Shi, X., Hadad, C. M., & Platz, M. S. (2005). Reaction of Hydroxyl Radical with Aromatic Hydrocarbons in Nonaqueous Solutions:  A Laser Flash Photolysis Study in Acetonitrile. The Journal of Physical Chemistry A, 109(11), 2547-2551. doi:10.1021/jp0452150 es_ES
dc.description.references Marin, M. L., Lhiaubet-Vallet, V., Santos-Juanes, L., Soler, J., Gomis, J., Arques, A., … Miranda, M. A. (2011). A photophysical approach to investigate the photooxidation mechanism of pesticides: Hydroxyl radical versus electron transfer. Applied Catalysis B: Environmental, 103(1-2), 48-53. doi:10.1016/j.apcatb.2011.01.007 es_ES
dc.description.references Rodríguez-Muñiz, G. M., Marin, M. L., Lhiaubet-Vallet, V., & Miranda, M. A. (2012). Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium. Chemistry - A European Journal, 18(26), 8024-8027. doi:10.1002/chem.201201090 es_ES
dc.description.references Mitroka, S., Zimmeck, S., Troya, D., & Tanko, J. M. (2010). How Solvent Modulates Hydroxyl Radical Reactivity in Hydrogen Atom Abstractions. Journal of the American Chemical Society, 132(9), 2907-2913. doi:10.1021/ja903856t es_ES
dc.description.references Serafini, M., Maiani, G., & Ferro-Luzzi, A. (1998). Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans. The Journal of Nutrition, 128(6), 1003-1007. doi:10.1093/jn/128.6.1003 es_ES
dc.description.references Arnous, A., Makris, D. P., & Kefalas, P. (2001). Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines. Journal of Agricultural and Food Chemistry, 49(12), 5736-5742. doi:10.1021/jf010827s es_ES
dc.description.references Frankel, E. ., German, J. ., Kinsella, J. ., Parks, E., & Kanner, J. (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, 341(8843), 454-457. doi:10.1016/0140-6736(93)90206-v es_ES
dc.description.references Ghiselli, A., Nardini, M., Baldi, A., & Scaccini, C. (1998). Antioxidant Activity of Different Phenolic Fractions Separated from an Italian Red Wine. Journal of Agricultural and Food Chemistry, 46(2), 361-367. doi:10.1021/jf970486b es_ES
dc.description.references Rice-Evans, C. (2001). Flavonoid Antioxidants. Current Medicinal Chemistry, 8(7), 797-807. doi:10.2174/0929867013373011 es_ES
dc.description.references Wadsworth, T. L., & Koop, D. R. (1999). Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochemical Pharmacology, 57(8), 941-949. doi:10.1016/s0006-2952(99)00002-7 es_ES
dc.description.references Pace-Asciak, C. R., Hahn, S., Diamandis, E. P., Soleas, G., & Goldberg, D. M. (1995). The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clinica Chimica Acta, 235(2), 207-219. doi:10.1016/0009-8981(95)06045-1 es_ES
dc.description.references Schneider, Y., Vincent, F., Duranton, B., Badolo, L., Gossé, F., Bergmann, C., … Raul, F. (2000). Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Letters, 158(1), 85-91. doi:10.1016/s0304-3835(00)00511-5 es_ES
dc.description.references Li, D.-D., Han, R.-M., Liang, R., Chen, C.-H., Lai, W., Zhang, J.-P., & Skibsted, L. H. (2012). Hydroxyl Radical Reaction with trans-Resveratrol: Initial Carbon Radical Adduct Formation Followed by Rearrangement to Phenoxyl Radical. The Journal of Physical Chemistry B, 116(24), 7154-7161. doi:10.1021/jp3033337 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem