Mostrar el registro sencillo del ítem
dc.contributor.author | Rodriguez-Muniz, Gemma M. | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Marín García, Mª Luisa | es_ES |
dc.date.accessioned | 2021-01-21T04:31:46Z | |
dc.date.available | 2021-01-21T04:31:46Z | |
dc.date.issued | 2019-01-02 | es_ES |
dc.identifier.issn | 1420-3049 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159600 | |
dc.description.abstract | [EN] Reactive oxygen species (ROS) can provoke damage to cells, where their concentrations are regulated by antioxidants. As the hydroxyl radical (center dot OH) is the most oxidizing ROS, we have focused our attention on the use of a mechanistically based time-resolved methodology, such as laser flash photolysis, to determine the relative reactivity of alcoholic beverages towards center dot OH as an indicator of their antioxidant potential. The selected drinks were of two different origins: (i) those derived from grapes such as red wine, white wine, white vermouth, marc and brandy and (ii) spirits not derived from grapes: triple sec, gin, whisky, and rum. Initially, we determined the quenching rate constant of ethanol with center dot OH and then we explored the reactivity of the different beverages, which was higher than expected based on their alcoholic content. This can be attributed to the presence of antioxidants and was especially remarkable for the grape-derived drinks. | es_ES |
dc.description.sponsorship | This research was funded by Spanish Government (Grant SEV-2016-0683) and Generalitat Valenciana (Prometeo Program). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Molecules | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Antioxidants | es_ES |
dc.subject | Laser flash photolysis | es_ES |
dc.subject | Spirits | es_ES |
dc.subject | Transient absorption | es_ES |
dc.subject | Wine | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/molecules24020234 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F005/ES/ESPECIES FOTOACTIVAS Y SU INTERACCION CON BIOMOLECULAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Rodriguez-Muniz, GM.; Miranda Alonso, MÁ.; Marín García, ML. (2019). A Time-Resolved Study on the Reactivity of Alcoholic Drinks with the Hydroxyl Radical. Molecules. 24(2):1-9. https://doi.org/10.3390/molecules24020234 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/molecules24020234 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 30634584 | es_ES |
dc.identifier.pmcid | PMC6359750 | es_ES |
dc.relation.pasarela | S\404295 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Nathan, C., & Ding, A. (2010). SnapShot: Reactive Oxygen Intermediates (ROI). Cell, 140(6), 951-951.e2. doi:10.1016/j.cell.2010.03.008 | es_ES |
dc.description.references | Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535-543. doi:10.1006/abbi.1993.1074 | es_ES |
dc.description.references | Treml, J., & Šmejkal, K. (2016). Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720-738. doi:10.1111/1541-4337.12204 | es_ES |
dc.description.references | Rodriguez-Muñiz, G. M., Gomis, J., Arques, A., Amat, A. M., Marin, M. L., & Miranda, M. A. (2014). Hydroxyl Radical as an Unlikely Key Intermediate in the Photodegradation of Emerging Pollutants. Photochemistry and Photobiology, 90(6), 1467-1469. doi:10.1111/php.12325 | es_ES |
dc.description.references | Chen, J., Pehkonen, S. O., & Lin, C.-J. (2003). Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research, 37(10), 2496-2504. doi:10.1016/s0043-1354(03)00039-3 | es_ES |
dc.description.references | Finley, J. W., Kong, A.-N., Hintze, K. J., Jeffery, E. H., Ji, L. L., & Lei, X. G. (2011). Antioxidants in Foods: State of the Science Important to the Food Industry. Journal of Agricultural and Food Chemistry, 59(13), 6837-6846. doi:10.1021/jf2013875 | es_ES |
dc.description.references | BEAL, M. F. (2006). Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s Disease. Annals of the New York Academy of Sciences, 991(1), 120-131. doi:10.1111/j.1749-6632.2003.tb07470.x | es_ES |
dc.description.references | Čolak, E. (2008). New Markers of Oxidative Damage to Macromolecules. Journal of Medical Biochemistry, 27(1), 1-16. doi:10.2478/v10011-007-0049-x | es_ES |
dc.description.references | Adadi, P., Barakova, N. V., & Krivoshapkina, E. F. (2018). Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. Journal of Agricultural and Food Chemistry, 66(24), 5925-5947. doi:10.1021/acs.jafc.8b01407 | es_ES |
dc.description.references | Huang, D., Ou, B., & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. doi:10.1021/jf030723c | es_ES |
dc.description.references | Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57(5), 1655-1666. doi:10.1021/jf803537k | es_ES |
dc.description.references | SITHISARN, P., CARLSEN, C., ANDERSEN, M., GRITSANAPAN, W., & SKIBSTED, L. (2007). Antioxidative effects of leaves from Azadirachta species of different provenience. Food Chemistry, 104(4), 1539-1549. doi:10.1016/j.foodchem.2007.02.033 | es_ES |
dc.description.references | Song, L.-L., Liang, R., Li, D.-D., Xing, Y.-D., Han, R.-M., Zhang, J.-P., & Skibsted, L. H. (2011). β-Carotene Radical Cation Addition to Green Tea Polyphenols. Mechanism of Antioxidant Antagonism in Peroxidizing Liposomes. Journal of Agricultural and Food Chemistry, 59(23), 12643-12651. doi:10.1021/jf2030456 | es_ES |
dc.description.references | Xu, M., Jin, Z., Ohm, J.-B., Schwarz, P., Rao, J., & Chen, B. (2018). Improvement of the Antioxidative Activity of Soluble Phenolic Compounds in Chickpea by Germination. Journal of Agricultural and Food Chemistry, 66(24), 6179-6187. doi:10.1021/acs.jafc.8b02208 | es_ES |
dc.description.references | Yang, H., Xue, X., Li, H., Apandi, S. N., Tay-Chan, S. C., Ong, S. P., & Tian, E. F. (2018). The relative antioxidant activity and steric structure of green tea catechins – A kinetic approach. Food Chemistry, 257, 399-405. doi:10.1016/j.foodchem.2018.03.043 | es_ES |
dc.description.references | Yilmaz, Y., & Toledo, R. T. (2003). Major Flavonoids in Grape Seeds and Skins: Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food Chemistry, 52(2), 255-260. doi:10.1021/jf030117h | es_ES |
dc.description.references | Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339(8808), 1523-1526. doi:10.1016/0140-6736(92)91277-f | es_ES |
dc.description.references | Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, J. E. (1994). Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry, 42(1), 64-69. doi:10.1021/jf00037a010 | es_ES |
dc.description.references | MacDonald-Wicks, L. K., Wood, L. G., & Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacityin vitro: a review. Journal of the Science of Food and Agriculture, 86(13), 2046-2056. doi:10.1002/jsfa.2603 | es_ES |
dc.description.references | Niki, E., & Noguchi, N. (2000). Evaluation of Antioxidant Capacity. What Capacity is being Measured by Which Method? IUBMB Life, 50(4), 323-329. doi:10.1080/15216540051081119 | es_ES |
dc.description.references | DeMatteo, M. P., Poole, J. S., Shi, X., Sachdeva, R., Hatcher, P. G., Hadad, C. M., & Platz, M. S. (2005). On the Electrophilicity of Hydroxyl Radical: A Laser Flash Photolysis and Computational Study. Journal of the American Chemical Society, 127(19), 7094-7109. doi:10.1021/ja043692q | es_ES |
dc.description.references | Poole, J. S., Shi, X., Hadad, C. M., & Platz, M. S. (2005). Reaction of Hydroxyl Radical with Aromatic Hydrocarbons in Nonaqueous Solutions: A Laser Flash Photolysis Study in Acetonitrile. The Journal of Physical Chemistry A, 109(11), 2547-2551. doi:10.1021/jp0452150 | es_ES |
dc.description.references | Marin, M. L., Lhiaubet-Vallet, V., Santos-Juanes, L., Soler, J., Gomis, J., Arques, A., … Miranda, M. A. (2011). A photophysical approach to investigate the photooxidation mechanism of pesticides: Hydroxyl radical versus electron transfer. Applied Catalysis B: Environmental, 103(1-2), 48-53. doi:10.1016/j.apcatb.2011.01.007 | es_ES |
dc.description.references | Rodríguez-Muñiz, G. M., Marin, M. L., Lhiaubet-Vallet, V., & Miranda, M. A. (2012). Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium. Chemistry - A European Journal, 18(26), 8024-8027. doi:10.1002/chem.201201090 | es_ES |
dc.description.references | Mitroka, S., Zimmeck, S., Troya, D., & Tanko, J. M. (2010). How Solvent Modulates Hydroxyl Radical Reactivity in Hydrogen Atom Abstractions. Journal of the American Chemical Society, 132(9), 2907-2913. doi:10.1021/ja903856t | es_ES |
dc.description.references | Serafini, M., Maiani, G., & Ferro-Luzzi, A. (1998). Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans. The Journal of Nutrition, 128(6), 1003-1007. doi:10.1093/jn/128.6.1003 | es_ES |
dc.description.references | Arnous, A., Makris, D. P., & Kefalas, P. (2001). Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged Red Wines. Journal of Agricultural and Food Chemistry, 49(12), 5736-5742. doi:10.1021/jf010827s | es_ES |
dc.description.references | Frankel, E. ., German, J. ., Kinsella, J. ., Parks, E., & Kanner, J. (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, 341(8843), 454-457. doi:10.1016/0140-6736(93)90206-v | es_ES |
dc.description.references | Ghiselli, A., Nardini, M., Baldi, A., & Scaccini, C. (1998). Antioxidant Activity of Different Phenolic Fractions Separated from an Italian Red Wine. Journal of Agricultural and Food Chemistry, 46(2), 361-367. doi:10.1021/jf970486b | es_ES |
dc.description.references | Rice-Evans, C. (2001). Flavonoid Antioxidants. Current Medicinal Chemistry, 8(7), 797-807. doi:10.2174/0929867013373011 | es_ES |
dc.description.references | Wadsworth, T. L., & Koop, D. R. (1999). Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochemical Pharmacology, 57(8), 941-949. doi:10.1016/s0006-2952(99)00002-7 | es_ES |
dc.description.references | Pace-Asciak, C. R., Hahn, S., Diamandis, E. P., Soleas, G., & Goldberg, D. M. (1995). The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clinica Chimica Acta, 235(2), 207-219. doi:10.1016/0009-8981(95)06045-1 | es_ES |
dc.description.references | Schneider, Y., Vincent, F., Duranton, B., Badolo, L., Gossé, F., Bergmann, C., … Raul, F. (2000). Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Letters, 158(1), 85-91. doi:10.1016/s0304-3835(00)00511-5 | es_ES |
dc.description.references | Li, D.-D., Han, R.-M., Liang, R., Chen, C.-H., Lai, W., Zhang, J.-P., & Skibsted, L. H. (2012). Hydroxyl Radical Reaction with trans-Resveratrol: Initial Carbon Radical Adduct Formation Followed by Rearrangement to Phenoxyl Radical. The Journal of Physical Chemistry B, 116(24), 7154-7161. doi:10.1021/jp3033337 | es_ES |