Mostrar el registro sencillo del ítem
dc.contributor.author | Borràs-Ferrís, Joan | es_ES |
dc.contributor.author | Sánchez Tovar, Rita | es_ES |
dc.contributor.author | Blasco-Tamarit, E. | es_ES |
dc.contributor.author | Muñoz-Portero, María-José | es_ES |
dc.contributor.author | Fernández Domene, Ramón Manuel | es_ES |
dc.contributor.author | Garcia-Anton, Jose | es_ES |
dc.date.accessioned | 2021-01-21T04:31:48Z | |
dc.date.available | 2021-01-21T04:31:48Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159601 | |
dc.description.abstract | [EN] Advanced oxidation processes driven by renewable energy sources are gaining attention in degrading organic pollutants in waste waters in an efficient and sustainable way. The present work is focused on a study of TiO2 nanotubes as photocatalysts for photoelectrocatalytic (PEC) degradation of acetaminophen (AMP) at different pH (3, 7, and 9). In particular, different TiO2 photocatalysts were synthetized by stirring the electrode at different Reynolds numbers (Res) during electrochemical anodization. The morphology of the photocatalysts and their crystalline structure were evaluated by field emission scanning electron microscopy (FESEM) and Raman confocal laser microscopy (RCLM). These analyses revealed that anatase TiO2 nanotubes were obtained after anodization. In addition, photocurrent densities versus potential curves were performed in order to characterize the electrochemical properties of the photocatalysts. These results showed that increasing the Re during anodization led to an enhancement in the obtained photocurrents, since under hydrodynamic conditions part of the initiation layer formed over the tubes was removed. PEC degradation of acetaminophen was followed by ultraviolet-visible absorbance measurements and chemical oxygen demand tests. As drug mineralization was the most important issue, total organic carbon measurements were also carried out. The statistical significance analysis established that acetaminophen PEC degradation improved as hydrodynamic conditions linearly increased in the studied range (Re from 0 to 600). Additionally, acetaminophen conversion had a quadratic behavior with respect to the reaction pH, where the maximum conversion value was reached at pH 3. However, in this case, the diversity of the byproducts increased due to a different PEC degradation mechanism. | es_ES |
dc.description.sponsorship | This research was funded by The Ministerio de Economia y Competitividad and cofinanced by the European Social Fund (CTQ2016-79203-R and UPOV08-3E-012). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Acetaminophen | es_ES |
dc.subject | Photoelectrodegradation | es_ES |
dc.subject | PH | es_ES |
dc.subject | Nanostructures | es_ES |
dc.subject | Titanium dioxide | es_ES |
dc.subject | Anodization | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | TiO2 Nanostructures for Photoelectrocatalytic Degradation of Acetaminophen | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano9040583 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Borràs-Ferrís, J.; Sánchez Tovar, R.; Blasco-Tamarit, E.; Muñoz-Portero, M.; Fernández Domene, RM.; Garcia-Anton, J. (2019). TiO2 Nanostructures for Photoelectrocatalytic Degradation of Acetaminophen. Nanomaterials. 9(4):1-13. https://doi.org/10.3390/nano9040583 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano9040583 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.identifier.pmid | 30970631 | es_ES |
dc.identifier.pmcid | PMC6523489 | es_ES |
dc.relation.pasarela | S\403661 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287. doi:10.1016/j.chemosphere.2013.07.059 | es_ES |
dc.description.references | Yang, L., Yu, L. E., & Ray, M. B. (2008). Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research, 42(13), 3480-3488. doi:10.1016/j.watres.2008.04.023 | es_ES |
dc.description.references | Solís-Casados, D. A., Escobar-Alarcón, L., Gómez-Oliván, L. M., Haro-Poniatowski, E., & Klimova, T. (2017). Photodegradation of pharmaceutical drugs using Sn-modified TiO 2 powders under visible light irradiation. Fuel, 198, 3-10. doi:10.1016/j.fuel.2017.01.059 | es_ES |
dc.description.references | Xie, G., Chang, X., Adhikari, B. R., Thind, S. S., & Chen, A. (2016). Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide. Chinese Journal of Catalysis, 37(7), 1062-1069. doi:10.1016/s1872-2067(15)61101-9 | es_ES |
dc.description.references | Basha, S., Keane, D., Nolan, K., Oelgemöller, M., Lawler, J., Tobin, J. M., & Morrissey, A. (2014). UV-induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics. Environmental Science and Pollution Research, 22(3), 2219-2230. doi:10.1007/s11356-014-3411-9 | es_ES |
dc.description.references | Jallouli, N., Elghniji, K., Trabelsi, H., & Ksibi, M. (2017). Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arabian Journal of Chemistry, 10, S3640-S3645. doi:10.1016/j.arabjc.2014.03.014 | es_ES |
dc.description.references | El-Kemary, M., El-Shamy, H., & El-Mehasseb, I. (2010). Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence, 130(12), 2327-2331. doi:10.1016/j.jlumin.2010.07.013 | es_ES |
dc.description.references | Lin, C. J., Liao, S.-J., Kao, L.-C., & Liou, S. Y. H. (2015). Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation. Journal of Hazardous Materials, 291, 9-17. doi:10.1016/j.jhazmat.2015.02.035 | es_ES |
dc.description.references | Eftekhari, A., Babu, V. J., & Ramakrishna, S. (2017). Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 42(16), 11078-11109. doi:10.1016/j.ijhydene.2017.03.029 | es_ES |
dc.description.references | Sánchez-Tovar, R., Fernández-Domene, R. M., García-García, D. M., & García-Antón, J. (2015). Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization. Journal of Power Sources, 286, 224-231. doi:10.1016/j.jpowsour.2015.03.174 | es_ES |
dc.description.references | Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374 | es_ES |
dc.description.references | Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5-8), 53-229. doi:10.1016/s0167-5729(02)00100-0 | es_ES |
dc.description.references | Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35. doi:10.1016/s1010-6030(97)00118-4 | es_ES |
dc.description.references | Sánchez-Tovar, R., Paramasivam, I., Lee, K., & Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry, 22(25), 12792. doi:10.1039/c2jm31246h | es_ES |
dc.description.references | Borràs-Ferrís, J., Sánchez-Tovar, R., Blasco-Tamarit, E., Fernández-Domene, R. M., & García-Antón, J. (2016). Effect of Reynolds number and lithium cation insertion on titanium anodization. Electrochimica Acta, 196, 24-32. doi:10.1016/j.electacta.2016.02.160 | es_ES |
dc.description.references | López Zavala, M., & Espinoza Estrada, E. (2016). Degradation of Acetaminophen and Its Transformation Products in Aqueous Solutions by Using an Electrochemical Oxidation Cell with Stainless Steel Electrodes. Water, 8(9), 383. doi:10.3390/w8090383 | es_ES |
dc.description.references | Costa, L. L., & Prado, A. G. S. (2009). TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 45-49. doi:10.1016/j.jphotochem.2008.09.014 | es_ES |
dc.description.references | Hsiao, P.-T., Wang, K.-P., Cheng, C.-W., & Teng, H. (2007). Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 19-24. doi:10.1016/j.jphotochem.2006.11.013 | es_ES |
dc.description.references | Qian, L., Du, Z.-L., Yang, S.-Y., & Jin, Z.-S. (2005). Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure, 749(1-3), 103-107. doi:10.1016/j.molstruc.2005.04.002 | es_ES |
dc.description.references | Hoque, M., & Guzman, M. (2018). Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. Materials, 11(10), 1990. doi:10.3390/ma11101990 | es_ES |
dc.description.references | Chen, Z., Jaramillo, T. F., Deutsch, T. G., Kleiman-Shwarsctein, A., Forman, A. J., Gaillard, N., … Dinh, H. N. (2010). Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 25(1), 3-16. doi:10.1557/jmr.2010.0020 | es_ES |
dc.description.references | Lin, J. C.-T., de Luna, M. D. G., Aranzamendez, G. L., & Lu, M.-C. (2016). Degradations of acetaminophen via a K 2 S 2 O 8 -doped TiO 2 photocatalyst under visible light irradiation. Chemosphere, 155, 388-394. doi:10.1016/j.chemosphere.2016.04.059 | es_ES |
dc.description.references | Malakootian, M., Pourshaban-Mazandarani, M., Hossaini, H., & Ehrampoush, M. H. (2016). Preparation and characterization of TiO 2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions. Process Safety and Environmental Protection, 104, 334-345. doi:10.1016/j.psep.2016.09.018 | es_ES |
dc.description.references | Paramasivam, I., Jha, H., Liu, N., & Schmuki, P. (2012). A Review of Photocatalysis using Self-organized TiO2Nanotubes and Other Ordered Oxide Nanostructures. Small, 8(20), 3073-3103. doi:10.1002/smll.201200564 | es_ES |
dc.description.references | Yang, L., Yu, L. E., & Ray, M. B. (2008). Photocatalytic Oxidation of Paracetamol: Dominant Reactants, Intermediates, and Reaction Mechanisms. Environmental Science & Technology, 43(2), 460-465. doi:10.1021/es8020099 | es_ES |
dc.description.references | Tao, H., Liang, X., Zhang, Q., & Chang, C.-T. (2015). Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen. Applied Surface Science, 324, 258-264. doi:10.1016/j.apsusc.2014.10.129 | es_ES |
dc.description.references | Zhang, X., Wu, F., Wu, X., Chen, P., & Deng, N. (2008). Photodegradation of acetaminophen in TiO2 suspended solution. Journal of Hazardous Materials, 157(2-3), 300-307. doi:10.1016/j.jhazmat.2007.12.098 | es_ES |
dc.description.references | Çifçi, D. İ., Tunçal, T., Pala, A., & Uslu, O. (2016). Determination of optimum extinction wavelength for paracetamol removal through energy efficient thin film reactor. Journal of Photochemistry and Photobiology A: Chemistry, 322-323, 102-109. doi:10.1016/j.jphotochem.2016.03.003 | es_ES |
dc.description.references | Moctezuma, E., Leyva, E., Aguilar, C. A., Luna, R. A., & Montalvo, C. (2012). Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. Journal of Hazardous Materials, 243, 130-138. doi:10.1016/j.jhazmat.2012.10.010 | es_ES |