Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287. doi:10.1016/j.chemosphere.2013.07.059
Yang, L., Yu, L. E., & Ray, M. B. (2008). Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research, 42(13), 3480-3488. doi:10.1016/j.watres.2008.04.023
Solís-Casados, D. A., Escobar-Alarcón, L., Gómez-Oliván, L. M., Haro-Poniatowski, E., & Klimova, T. (2017). Photodegradation of pharmaceutical drugs using Sn-modified TiO 2 powders under visible light irradiation. Fuel, 198, 3-10. doi:10.1016/j.fuel.2017.01.059
[+]
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287. doi:10.1016/j.chemosphere.2013.07.059
Yang, L., Yu, L. E., & Ray, M. B. (2008). Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research, 42(13), 3480-3488. doi:10.1016/j.watres.2008.04.023
Solís-Casados, D. A., Escobar-Alarcón, L., Gómez-Oliván, L. M., Haro-Poniatowski, E., & Klimova, T. (2017). Photodegradation of pharmaceutical drugs using Sn-modified TiO 2 powders under visible light irradiation. Fuel, 198, 3-10. doi:10.1016/j.fuel.2017.01.059
Xie, G., Chang, X., Adhikari, B. R., Thind, S. S., & Chen, A. (2016). Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide. Chinese Journal of Catalysis, 37(7), 1062-1069. doi:10.1016/s1872-2067(15)61101-9
Basha, S., Keane, D., Nolan, K., Oelgemöller, M., Lawler, J., Tobin, J. M., & Morrissey, A. (2014). UV-induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics. Environmental Science and Pollution Research, 22(3), 2219-2230. doi:10.1007/s11356-014-3411-9
Jallouli, N., Elghniji, K., Trabelsi, H., & Ksibi, M. (2017). Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arabian Journal of Chemistry, 10, S3640-S3645. doi:10.1016/j.arabjc.2014.03.014
El-Kemary, M., El-Shamy, H., & El-Mehasseb, I. (2010). Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence, 130(12), 2327-2331. doi:10.1016/j.jlumin.2010.07.013
Lin, C. J., Liao, S.-J., Kao, L.-C., & Liou, S. Y. H. (2015). Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation. Journal of Hazardous Materials, 291, 9-17. doi:10.1016/j.jhazmat.2015.02.035
Eftekhari, A., Babu, V. J., & Ramakrishna, S. (2017). Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 42(16), 11078-11109. doi:10.1016/j.ijhydene.2017.03.029
Sánchez-Tovar, R., Fernández-Domene, R. M., García-García, D. M., & García-Antón, J. (2015). Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization. Journal of Power Sources, 286, 224-231. doi:10.1016/j.jpowsour.2015.03.174
Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374
Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5-8), 53-229. doi:10.1016/s0167-5729(02)00100-0
Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35. doi:10.1016/s1010-6030(97)00118-4
Sánchez-Tovar, R., Paramasivam, I., Lee, K., & Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry, 22(25), 12792. doi:10.1039/c2jm31246h
Borràs-Ferrís, J., Sánchez-Tovar, R., Blasco-Tamarit, E., Fernández-Domene, R. M., & García-Antón, J. (2016). Effect of Reynolds number and lithium cation insertion on titanium anodization. Electrochimica Acta, 196, 24-32. doi:10.1016/j.electacta.2016.02.160
López Zavala, M., & Espinoza Estrada, E. (2016). Degradation of Acetaminophen and Its Transformation Products in Aqueous Solutions by Using an Electrochemical Oxidation Cell with Stainless Steel Electrodes. Water, 8(9), 383. doi:10.3390/w8090383
Costa, L. L., & Prado, A. G. S. (2009). TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry, 201(1), 45-49. doi:10.1016/j.jphotochem.2008.09.014
Hsiao, P.-T., Wang, K.-P., Cheng, C.-W., & Teng, H. (2007). Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 19-24. doi:10.1016/j.jphotochem.2006.11.013
Qian, L., Du, Z.-L., Yang, S.-Y., & Jin, Z.-S. (2005). Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure, 749(1-3), 103-107. doi:10.1016/j.molstruc.2005.04.002
Hoque, M., & Guzman, M. (2018). Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. Materials, 11(10), 1990. doi:10.3390/ma11101990
Chen, Z., Jaramillo, T. F., Deutsch, T. G., Kleiman-Shwarsctein, A., Forman, A. J., Gaillard, N., … Dinh, H. N. (2010). Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 25(1), 3-16. doi:10.1557/jmr.2010.0020
Lin, J. C.-T., de Luna, M. D. G., Aranzamendez, G. L., & Lu, M.-C. (2016). Degradations of acetaminophen via a K 2 S 2 O 8 -doped TiO 2 photocatalyst under visible light irradiation. Chemosphere, 155, 388-394. doi:10.1016/j.chemosphere.2016.04.059
Malakootian, M., Pourshaban-Mazandarani, M., Hossaini, H., & Ehrampoush, M. H. (2016). Preparation and characterization of TiO 2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions. Process Safety and Environmental Protection, 104, 334-345. doi:10.1016/j.psep.2016.09.018
Paramasivam, I., Jha, H., Liu, N., & Schmuki, P. (2012). A Review of Photocatalysis using Self-organized TiO2Nanotubes and Other Ordered Oxide Nanostructures. Small, 8(20), 3073-3103. doi:10.1002/smll.201200564
Yang, L., Yu, L. E., & Ray, M. B. (2008). Photocatalytic Oxidation of Paracetamol: Dominant Reactants, Intermediates, and Reaction Mechanisms. Environmental Science & Technology, 43(2), 460-465. doi:10.1021/es8020099
Tao, H., Liang, X., Zhang, Q., & Chang, C.-T. (2015). Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen. Applied Surface Science, 324, 258-264. doi:10.1016/j.apsusc.2014.10.129
Zhang, X., Wu, F., Wu, X., Chen, P., & Deng, N. (2008). Photodegradation of acetaminophen in TiO2 suspended solution. Journal of Hazardous Materials, 157(2-3), 300-307. doi:10.1016/j.jhazmat.2007.12.098
Çifçi, D. İ., Tunçal, T., Pala, A., & Uslu, O. (2016). Determination of optimum extinction wavelength for paracetamol removal through energy efficient thin film reactor. Journal of Photochemistry and Photobiology A: Chemistry, 322-323, 102-109. doi:10.1016/j.jphotochem.2016.03.003
Moctezuma, E., Leyva, E., Aguilar, C. A., Luna, R. A., & Montalvo, C. (2012). Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. Journal of Hazardous Materials, 243, 130-138. doi:10.1016/j.jhazmat.2012.10.010
[-]