- -

A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties

Mostrar el registro completo del ítem

Rendon-Patiño, A.; Doménech, A.; García Gómez, H.; Primo Arnau, AM. (2019). A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties. Nanoscale. 11(6):2981-2990. https://doi.org/10.1039/c8nr08377k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159613

Ficheros en el ítem

Metadatos del ítem

Título: A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties
Autor: Rendon-Patiño, Alejandra Doménech, Antonio García Gómez, Hermenegildo Primo Arnau, Ana Maria
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Herein, a reliable procedure for the preparation of graphene-boron nitride superlattices, either as films or powders, consisting of the pyrolysis at 900 degrees C of polystyrene embedded pre-formed boron nitride single ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Nanoscale. (issn: 2040-3364 )
DOI: 10.1039/c8nr08377k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8nr08377k
Código del Proyecto:
MINECO/CTQ2015-69653-CO2-R1
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-2015-69653-CO2-R1) is gratefully acknowledged. AR and AP thank the Spanish Ministry of Economy and Competitiveness for a ...[+]
Tipo: Artículo

References

Frazier, R., Daly, D., Swatloski, R., Hathcock, K., & South, C. (2009). Recent Progress in Graphene-Related Nanotechnologies. Recent Patents on Nanotechnology, 3(3), 164-176. doi:10.2174/187221009789177830

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Hirai, H., Tsuchiya, H., Kamakura, Y., Mori, N., & Ogawa, M. (2014). Electron mobility calculation for graphene on substrates. Journal of Applied Physics, 116(8), 083703. doi:10.1063/1.4893650 [+]
Frazier, R., Daly, D., Swatloski, R., Hathcock, K., & South, C. (2009). Recent Progress in Graphene-Related Nanotechnologies. Recent Patents on Nanotechnology, 3(3), 164-176. doi:10.2174/187221009789177830

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Hirai, H., Tsuchiya, H., Kamakura, Y., Mori, N., & Ogawa, M. (2014). Electron mobility calculation for graphene on substrates. Journal of Applied Physics, 116(8), 083703. doi:10.1063/1.4893650

Yu, S., Wu, X., Wang, Y., Guo, X., & Tong, L. (2017). 2D Materials for Optical Modulation: Challenges and Opportunities. Advanced Materials, 29(14), 1606128. doi:10.1002/adma.201606128

Sun, Z., & Chang, H. (2014). Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology. ACS Nano, 8(5), 4133-4156. doi:10.1021/nn500508c

Wang, H., Feng, H., & Li, J. (2014). Graphene and Graphene-like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 10(11), 2165-2181. doi:10.1002/smll.201303711

Xu, M., Liang, T., Shi, M., & Chen, H. (2013). Graphene-Like Two-Dimensional Materials. Chemical Reviews, 113(5), 3766-3798. doi:10.1021/cr300263a

Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J., & Zamora, F. (2011). 2D materials: to graphene and beyond. Nanoscale, 3(1), 20-30. doi:10.1039/c0nr00323a

Gupta, A., Sakthivel, T., & Seal, S. (2015). Recent development in 2D materials beyond graphene. Progress in Materials Science, 73, 44-126. doi:10.1016/j.pmatsci.2015.02.002

Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., … Goldberger, J. E. (2013). Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 7(4), 2898-2926. doi:10.1021/nn400280c

Novoselov, K. S., Mishchenko, A., Carvalho, A., & Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353(6298). doi:10.1126/science.aac9439

Jariwala, D., Marks, T. J., & Hersam, M. C. (2016). Mixed-dimensional van der Waals heterostructures. Nature Materials, 16(2), 170-181. doi:10.1038/nmat4703

Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., … Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5(10), 722-726. doi:10.1038/nnano.2010.172

Zomer, P. J., Guimarães, M. H. D., Tombros, N., & van Wees, B. J. (2012). Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Physical Review B, 86(16). doi:10.1103/physrevb.86.161416

Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J. D., Watanabe, K., Taniguchi, T., … LeRoy, B. J. (2012). Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Physics, 8(5), 382-386. doi:10.1038/nphys2272

Woessner, A., Lundeberg, M. B., Gao, Y., Principi, A., Alonso-González, P., Carrega, M., … Koppens, F. H. L. (2014). Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Materials, 14(4), 421-425. doi:10.1038/nmat4169

Kaloni, T. P., Cheng, Y. C., & Schwingenschlögl, U. (2012). Electronic structure of superlattices of graphene and hexagonal boron nitride. J. Mater. Chem., 22(3), 919-922. doi:10.1039/c1jm14895h

Wang, J., Ma, F., & Sun, M. (2017). Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances, 7(27), 16801-16822. doi:10.1039/c7ra00260b

Park, C.-H., Yang, L., Son, Y.-W., Cohen, M. L., & Louie, S. G. (2008). Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nature Physics, 4(3), 213-217. doi:10.1038/nphys890

Xu, B., Lu, Y. H., Feng, Y. P., & Lin, J. Y. (2010). Density functional theory study of BN-doped graphene superlattice: Role of geometrical shape and size. Journal of Applied Physics, 108(7), 073711. doi:10.1063/1.3487959

Xue, J., Sanchez-Yamagishi, J., Bulmash, D., Jacquod, P., Deshpande, A., Watanabe, K., … LeRoy, B. J. (2011). Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Materials, 10(4), 282-285. doi:10.1038/nmat2968

Güler, Ö., & Güler, S. H. (2016). Production of graphene–boron nitride hybrid nanosheets by liquid-phase exfoliation. Optik, 127(11), 4630-4634. doi:10.1016/j.ijleo.2016.02.033

Liu, Z., Ma, L., Shi, G., Zhou, W., Gong, Y., Lei, S., … Ajayan, P. M. (2013). In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 8(2), 119-124. doi:10.1038/nnano.2012.256

Yang, W., Chen, G., Shi, Z., Liu, C.-C., Zhang, L., Xie, G., … Zhang, G. (2013). Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Materials, 12(9), 792-797. doi:10.1038/nmat3695

Gao, T., Song, X., Du, H., Nie, Y., Chen, Y., Ji, Q., … Liu, Z. (2015). Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nature Communications, 6(1). doi:10.1038/ncomms7835

Zhang, C., Zhao, S., Jin, C., Koh, A. L., Zhou, Y., Xu, W., … Liu, Z. (2015). Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications, 6(1). doi:10.1038/ncomms7519

Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u

Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802j

Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S., & Coleman, J. N. (2013). Liquid Exfoliation of Layered Materials. Science, 340(6139). doi:10.1126/science.1226419

May, P., Khan, U., Hughes, J. M., & Coleman, J. N. (2012). Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. The Journal of Physical Chemistry C, 116(20), 11393-11400. doi:10.1021/jp302365w

Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101

Khan, U., May, P., O’Neill, A., Bell, A. P., Boussac, E., Martin, A., … Coleman, J. N. (2013). Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale, 5(2), 581-587. doi:10.1039/c2nr33049k

Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N., & Tan, P.-H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47(5), 1822-1873. doi:10.1039/c6cs00915h

Mishra, N., Miseikis, V., Convertino, D., Gemmi, M., Piazza, V., & Coletti, C. (2016). Rapid and catalyst-free van der Waals epitaxy of graphene on hexagonal boron nitride. Carbon, 96, 497-502. doi:10.1016/j.carbon.2015.09.100

Tran, T. T., Bray, K., Ford, M. J., Toth, M., & Aharonovich, I. (2015). Quantum emission from hexagonal boron nitride monolayers. Nature Nanotechnology, 11(1), 37-41. doi:10.1038/nnano.2015.242

Grosso, G., Moon, H., Lienhard, B., Ali, S., Efetov, D. K., Furchi, M. M., … Englund, D. (2017). Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nature Communications, 8(1). doi:10.1038/s41467-017-00810-2

Chejanovsky, N., Rezai, M., Paolucci, F., Kim, Y., Rendler, T., Rouabeh, W., … Wrachtrup, J. (2016). Structural Attributes and Photodynamics of Visible Spectrum Quantum Emitters in Hexagonal Boron Nitride. Nano Letters, 16(11), 7037-7045. doi:10.1021/acs.nanolett.6b03268

Zhu, C., & Dong, S. (2013). Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale, 5(5), 1753. doi:10.1039/c2nr33839d

Duan, J., Chen, S., Jaroniec, M., & Qiao, S. Z. (2015). Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 5(9), 5207-5234. doi:10.1021/acscatal.5b00991

Xia, B., Yan, Y., Wang, X., & Lou, X. W. (David). (2014). Recent progress on graphene-based hybrid electrocatalysts. Mater. Horiz., 1(4), 379-399. doi:10.1039/c4mh00040d

Qin, L., Wang, L., Yang, X., Ding, R., Zheng, Z., Chen, X., & Lv, B. (2018). Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron- and nitrogen-codoped porous graphene. Journal of Catalysis, 359, 242-250. doi:10.1016/j.jcat.2018.01.013

Esteve-Adell, I., He, J., Ramiro, F., Atienzar, P., Primo, A., & García, H. (2018). Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 10(9), 4391-4397. doi:10.1039/c7nr08424b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem