- -

A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rendon-Patiño, Alejandra es_ES
dc.contributor.author Doménech, Antonio es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.date.accessioned 2021-01-21T04:32:15Z
dc.date.available 2021-01-21T04:32:15Z
dc.date.issued 2019-02-14 es_ES
dc.identifier.issn 2040-3364 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159613
dc.description.abstract [EN] Herein, a reliable procedure for the preparation of graphene-boron nitride superlattices, either as films or powders, consisting of the pyrolysis at 900 degrees C of polystyrene embedded pre-formed boron nitride single sheets is reported. The procedure can serve to prepare large area films (cm x cm) of this superlattice on quartz, copper foil and ceramics. Selected area electron diffraction patterns at every location on the films show the occurrence of the graphene-boron nitride superlattice all over the film. The procedure can also be applied to the preparation of powdered samples on a gram scale. Comparison with other materials indicates that the superlattice appears spontaneously as the growing graphene sheets develop, due to the templating effect of pre-existing boron nitride single sheets. Since the characteristic boron nitride emission in the visible region is completely quenched in the superlattice configuration, it is proposed that fluorescence microscopy can be used as a routine technique to determine the occurrence of superlattice in large area films. Electrodes of this material show an unforeseen catalytic activity for oxygen reduction reaction and exhibit a decrease of the heterojunction-electrolyte interphase electrical resistance. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-2015-69653-CO2-R1) is gratefully acknowledged. AR and AP thank the Spanish Ministry of Economy and Competitiveness for a postgraduate scholarship and a Ramon y Cajal research associate contract, respectively. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MINECO/CTQ2015-69653-CO2-R1 es_ES
dc.relation.ispartof Nanoscale es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8nr08377k es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Rendon-Patiño, A.; Doménech, A.; García Gómez, H.; Primo Arnau, AM. (2019). A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm x cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties. Nanoscale. 11(6):2981-2990. https://doi.org/10.1039/c8nr08377k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8nr08377k es_ES
dc.description.upvformatpinicio 2981 es_ES
dc.description.upvformatpfin 2990 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 30698195 es_ES
dc.relation.pasarela S\406918 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Frazier, R., Daly, D., Swatloski, R., Hathcock, K., & South, C. (2009). Recent Progress in Graphene-Related Nanotechnologies. Recent Patents on Nanotechnology, 3(3), 164-176. doi:10.2174/187221009789177830 es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Hirai, H., Tsuchiya, H., Kamakura, Y., Mori, N., & Ogawa, M. (2014). Electron mobility calculation for graphene on substrates. Journal of Applied Physics, 116(8), 083703. doi:10.1063/1.4893650 es_ES
dc.description.references Yu, S., Wu, X., Wang, Y., Guo, X., & Tong, L. (2017). 2D Materials for Optical Modulation: Challenges and Opportunities. Advanced Materials, 29(14), 1606128. doi:10.1002/adma.201606128 es_ES
dc.description.references Sun, Z., & Chang, H. (2014). Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology. ACS Nano, 8(5), 4133-4156. doi:10.1021/nn500508c es_ES
dc.description.references Wang, H., Feng, H., & Li, J. (2014). Graphene and Graphene-like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 10(11), 2165-2181. doi:10.1002/smll.201303711 es_ES
dc.description.references Xu, M., Liang, T., Shi, M., & Chen, H. (2013). Graphene-Like Two-Dimensional Materials. Chemical Reviews, 113(5), 3766-3798. doi:10.1021/cr300263a es_ES
dc.description.references Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J., & Zamora, F. (2011). 2D materials: to graphene and beyond. Nanoscale, 3(1), 20-30. doi:10.1039/c0nr00323a es_ES
dc.description.references Gupta, A., Sakthivel, T., & Seal, S. (2015). Recent development in 2D materials beyond graphene. Progress in Materials Science, 73, 44-126. doi:10.1016/j.pmatsci.2015.02.002 es_ES
dc.description.references Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., … Goldberger, J. E. (2013). Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 7(4), 2898-2926. doi:10.1021/nn400280c es_ES
dc.description.references Novoselov, K. S., Mishchenko, A., Carvalho, A., & Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353(6298). doi:10.1126/science.aac9439 es_ES
dc.description.references Jariwala, D., Marks, T. J., & Hersam, M. C. (2016). Mixed-dimensional van der Waals heterostructures. Nature Materials, 16(2), 170-181. doi:10.1038/nmat4703 es_ES
dc.description.references Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., … Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5(10), 722-726. doi:10.1038/nnano.2010.172 es_ES
dc.description.references Zomer, P. J., Guimarães, M. H. D., Tombros, N., & van Wees, B. J. (2012). Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Physical Review B, 86(16). doi:10.1103/physrevb.86.161416 es_ES
dc.description.references Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J. D., Watanabe, K., Taniguchi, T., … LeRoy, B. J. (2012). Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Physics, 8(5), 382-386. doi:10.1038/nphys2272 es_ES
dc.description.references Woessner, A., Lundeberg, M. B., Gao, Y., Principi, A., Alonso-González, P., Carrega, M., … Koppens, F. H. L. (2014). Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Materials, 14(4), 421-425. doi:10.1038/nmat4169 es_ES
dc.description.references Kaloni, T. P., Cheng, Y. C., & Schwingenschlögl, U. (2012). Electronic structure of superlattices of graphene and hexagonal boron nitride. J. Mater. Chem., 22(3), 919-922. doi:10.1039/c1jm14895h es_ES
dc.description.references Wang, J., Ma, F., & Sun, M. (2017). Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances, 7(27), 16801-16822. doi:10.1039/c7ra00260b es_ES
dc.description.references Park, C.-H., Yang, L., Son, Y.-W., Cohen, M. L., & Louie, S. G. (2008). Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nature Physics, 4(3), 213-217. doi:10.1038/nphys890 es_ES
dc.description.references Xu, B., Lu, Y. H., Feng, Y. P., & Lin, J. Y. (2010). Density functional theory study of BN-doped graphene superlattice: Role of geometrical shape and size. Journal of Applied Physics, 108(7), 073711. doi:10.1063/1.3487959 es_ES
dc.description.references Xue, J., Sanchez-Yamagishi, J., Bulmash, D., Jacquod, P., Deshpande, A., Watanabe, K., … LeRoy, B. J. (2011). Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Materials, 10(4), 282-285. doi:10.1038/nmat2968 es_ES
dc.description.references Güler, Ö., & Güler, S. H. (2016). Production of graphene–boron nitride hybrid nanosheets by liquid-phase exfoliation. Optik, 127(11), 4630-4634. doi:10.1016/j.ijleo.2016.02.033 es_ES
dc.description.references Liu, Z., Ma, L., Shi, G., Zhou, W., Gong, Y., Lei, S., … Ajayan, P. M. (2013). In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 8(2), 119-124. doi:10.1038/nnano.2012.256 es_ES
dc.description.references Yang, W., Chen, G., Shi, Z., Liu, C.-C., Zhang, L., Xie, G., … Zhang, G. (2013). Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Materials, 12(9), 792-797. doi:10.1038/nmat3695 es_ES
dc.description.references Gao, T., Song, X., Du, H., Nie, Y., Chen, Y., Ji, Q., … Liu, Z. (2015). Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nature Communications, 6(1). doi:10.1038/ncomms7835 es_ES
dc.description.references Zhang, C., Zhao, S., Jin, C., Koh, A. L., Zhou, Y., Xu, W., … Liu, Z. (2015). Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications, 6(1). doi:10.1038/ncomms7519 es_ES
dc.description.references Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u es_ES
dc.description.references Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802j es_ES
dc.description.references Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S., & Coleman, J. N. (2013). Liquid Exfoliation of Layered Materials. Science, 340(6139). doi:10.1126/science.1226419 es_ES
dc.description.references May, P., Khan, U., Hughes, J. M., & Coleman, J. N. (2012). Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. The Journal of Physical Chemistry C, 116(20), 11393-11400. doi:10.1021/jp302365w es_ES
dc.description.references Rendón-Patiño, A., Niu, J., Doménech-Carbó, A., García, H., & Primo, A. (2019). Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 9(1), 101. doi:10.3390/nano9010101 es_ES
dc.description.references Khan, U., May, P., O’Neill, A., Bell, A. P., Boussac, E., Martin, A., … Coleman, J. N. (2013). Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale, 5(2), 581-587. doi:10.1039/c2nr33049k es_ES
dc.description.references Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N., & Tan, P.-H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47(5), 1822-1873. doi:10.1039/c6cs00915h es_ES
dc.description.references Mishra, N., Miseikis, V., Convertino, D., Gemmi, M., Piazza, V., & Coletti, C. (2016). Rapid and catalyst-free van der Waals epitaxy of graphene on hexagonal boron nitride. Carbon, 96, 497-502. doi:10.1016/j.carbon.2015.09.100 es_ES
dc.description.references Tran, T. T., Bray, K., Ford, M. J., Toth, M., & Aharonovich, I. (2015). Quantum emission from hexagonal boron nitride monolayers. Nature Nanotechnology, 11(1), 37-41. doi:10.1038/nnano.2015.242 es_ES
dc.description.references Grosso, G., Moon, H., Lienhard, B., Ali, S., Efetov, D. K., Furchi, M. M., … Englund, D. (2017). Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nature Communications, 8(1). doi:10.1038/s41467-017-00810-2 es_ES
dc.description.references Chejanovsky, N., Rezai, M., Paolucci, F., Kim, Y., Rendler, T., Rouabeh, W., … Wrachtrup, J. (2016). Structural Attributes and Photodynamics of Visible Spectrum Quantum Emitters in Hexagonal Boron Nitride. Nano Letters, 16(11), 7037-7045. doi:10.1021/acs.nanolett.6b03268 es_ES
dc.description.references Zhu, C., & Dong, S. (2013). Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale, 5(5), 1753. doi:10.1039/c2nr33839d es_ES
dc.description.references Duan, J., Chen, S., Jaroniec, M., & Qiao, S. Z. (2015). Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 5(9), 5207-5234. doi:10.1021/acscatal.5b00991 es_ES
dc.description.references Xia, B., Yan, Y., Wang, X., & Lou, X. W. (David). (2014). Recent progress on graphene-based hybrid electrocatalysts. Mater. Horiz., 1(4), 379-399. doi:10.1039/c4mh00040d es_ES
dc.description.references Qin, L., Wang, L., Yang, X., Ding, R., Zheng, Z., Chen, X., & Lv, B. (2018). Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron- and nitrogen-codoped porous graphene. Journal of Catalysis, 359, 242-250. doi:10.1016/j.jcat.2018.01.013 es_ES
dc.description.references Esteve-Adell, I., He, J., Ramiro, F., Atienzar, P., Primo, A., & García, H. (2018). Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 10(9), 4391-4397. doi:10.1039/c7nr08424b es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem