- -

Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH

Mostrar el registro completo del ítem

Fernández Domene, RM.; Roselló-Márquez, G.; Sánchez Tovar, R.; Lucas-Granados, B.; Garcia-Anton, J. (2019). Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH. Separation and Purification Technology. 212:458-464. https://doi.org/10.1016/j.seppur.2018.11.049

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159615

Ficheros en el ítem

Metadatos del ítem

Título: Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH
Autor: Fernández Domene, Ramón Manuel Roselló-Márquez, Gemma Sánchez Tovar, Rita Lucas-Granados, Bianca Garcia-Anton, Jose
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] A visible-light driven photoelectrochemical degradation process has been applied to a solution polluted with the organophosphate insecticide chlorfenvinphos. Different WO3 nanosheets/nanorods have been used as ...[+]
Palabras clave: Photoelectrochemical degradation , WO3 nanorods , Anodization , Chlorfenvinphos , Regression model
Derechos de uso: Reserva de todos los derechos
Fuente:
Separation and Purification Technology. (issn: 1383-5866 )
DOI: 10.1016/j.seppur.2018.11.049
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.seppur.2018.11.049
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/
info:eu-repo/grantAgreement/UPV//PAID-10-17/
info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F159/
Agradecimientos:
Authors thank for the financial support to the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R), for its help in the Laser Raman Microscope acquisition (UPOV08-3E-012) and for the co-finance by the ...[+]
Tipo: Artículo

References

World Health Organization – Regional Office for the Eastern Mediterranean (WHO EMRO). Nerve gases: Tabun (CAS 77-81-6); Sarin (CAS 107-44-8); Soman (CAS 96-64-0); VX (CAS 50782-69-9) fact sheet (http://www.emro.who.int/ceha/information-resources/nerve-gas-fact-sheet.html, accessed 9 November 2018).

U.S.Environmental Protection Agency. Pesticide Poisoning Handbook – Section II Insecticides (Chapter 5: Organophosphate Insecticides), (https://www.epa.gov/sites/production/files/documents/rmpp_6thed_ch5_organophosphates.pdf; accessed 9 November 2018).

Lartiges, S. B., & Garrigues, P. P. (1995). Degradation Kinetics of Organophosphorus and Organonitrogen Pesticides in Different Waters under Various Environmental Conditions. Environmental Science & Technology, 29(5), 1246-1254. doi:10.1021/es00005a016 [+]
World Health Organization – Regional Office for the Eastern Mediterranean (WHO EMRO). Nerve gases: Tabun (CAS 77-81-6); Sarin (CAS 107-44-8); Soman (CAS 96-64-0); VX (CAS 50782-69-9) fact sheet (http://www.emro.who.int/ceha/information-resources/nerve-gas-fact-sheet.html, accessed 9 November 2018).

U.S.Environmental Protection Agency. Pesticide Poisoning Handbook – Section II Insecticides (Chapter 5: Organophosphate Insecticides), (https://www.epa.gov/sites/production/files/documents/rmpp_6thed_ch5_organophosphates.pdf; accessed 9 November 2018).

Lartiges, S. B., & Garrigues, P. P. (1995). Degradation Kinetics of Organophosphorus and Organonitrogen Pesticides in Different Waters under Various Environmental Conditions. Environmental Science & Technology, 29(5), 1246-1254. doi:10.1021/es00005a016

U.S.Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chlorfenvinphos; 1997.

European Chemicals Agency (ECHA). Chlorfenvinphos Information ((https://echa.europa.eu/substance-information/-/substanceinfo/100.006.758; accessed 9 November 2018).

Medina, D., Prieto, A., Ettiene, G., Buscema, I., & V, A. A. de. (1999). Persistence of Organophosphorus Pesticide Residues in Limón River Waters. Bulletin of Environmental Contamination and Toxicology, 63(1), 39-44. doi:10.1007/s001289900945

Bailey, H. C., Elphick, J. R., Krassoi, R., Mulhall, A.-M., Lovell, A. J., & Slee, D. J. (2005). IDENTIFICATION OF CHLORFENVINPHOS TOXICITY IN A MUNICIPAL EFFLUENT IN SYDNEY, NEW SOUTH WALES, AUSTRALIA. Environmental Toxicology and Chemistry, 24(7), 1773. doi:10.1897/04-366r.1

Staniszewska, M., Boniecka, H., & Gajecka, A. (2013). Organochlorine, Organophosphoric and Organotin Contaminants, Aromatic and Aliphatic Hydrocarbons and Heavy Metals in Sediments of the Ports from the Polish Part of the Vistula Lagoon (Baltic Sea). Soil and Sediment Contamination: An International Journal, 22(2), 151-173. doi:10.1080/15320383.2013.722137

Belenguer, V., Martinez-Capel, F., Masiá, A., & Picó, Y. (2014). Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (Eastern Spain). Journal of Hazardous Materials, 265, 271-279. doi:10.1016/j.jhazmat.2013.11.016

Oliveira, C., Alves, A., & Madeira, L. M. (2014). Treatment of water networks (waters and deposits) contaminated with chlorfenvinphos by oxidation with Fenton’s reagent. Chemical Engineering Journal, 241, 190-199. doi:10.1016/j.cej.2013.12.026

Silva, E., Daam, M. A., & Cerejeira, M. J. (2015). Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins. Chemosphere, 135, 394-402. doi:10.1016/j.chemosphere.2015.05.013

Kanzari, F., Asia, L., Syakti, A. D., Piram, A., Malleret, L., Mille, G., & Doumenq, P. (2015). Distribution and risk assessment of hydrocarbons (aliphatic and PAHs), polychlorinated biphenyls (PCBs), and pesticides in surface sediments from an agricultural river (Durance) and an industrialized urban lagoon (Berre lagoon), France. Environmental Monitoring and Assessment, 187(9). doi:10.1007/s10661-015-4823-9

Kuzmanović, M., López-Doval, J. C., De Castro-Català, N., Guasch, H., Petrović, M., Muñoz, I., … Barceló, D. (2016). Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status. Science of The Total Environment, 540, 324-333. doi:10.1016/j.scitotenv.2015.06.112

Cruzeiro, C., Pardal, M. Â., Rodrigues-Oliveira, N., Castro, L. F. C., Rocha, E., & Rocha, M. J. (2016). Multi-matrix quantification and risk assessment of pesticides in the longest river of the Iberian peninsula. Science of The Total Environment, 572, 263-272. doi:10.1016/j.scitotenv.2016.07.203

Ccanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., & Barceló, D. (2016). Pesticides in the Ebro River basin: Occurrence and risk assessment. Environmental Pollution, 211, 414-424. doi:10.1016/j.envpol.2015.12.059

Pinto, M. I., Burrows, H. D., Sontag, G., Vale, C., & Noronha, J. P. (2016). Priority pesticides in sediments of European coastal lagoons: A review. Marine Pollution Bulletin, 112(1-2), 6-16. doi:10.1016/j.marpolbul.2016.06.101

Ccanccapa, A., Masiá, A., Andreu, V., & Picó, Y. (2016). Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain). Science of The Total Environment, 540, 200-210. doi:10.1016/j.scitotenv.2015.06.063

Xie, Y., Wang, J., Wu, Y., Ren, C., Song, C., Yang, J., … Zhang, X. (2016). Using in situ bacterial communities to monitor contaminants in river sediments. Environmental Pollution, 212, 348-357. doi:10.1016/j.envpol.2016.01.031

Corada-Fernández, C., Candela, L., Torres-Fuentes, N., Pintado-Herrera, M. G., Paniw, M., & González-Mazo, E. (2017). Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain). Science of The Total Environment, 605-606, 770-783. doi:10.1016/j.scitotenv.2017.06.049

Kuzmanovic, M., Dolédec, S., de Castro-Catala, N., Ginebreda, A., Sabater, S., Muñoz, I., & Barceló, D. (2017). Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environmental Research, 156, 485-493. doi:10.1016/j.envres.2017.03.054

Tousova, Z., Oswald, P., Slobodnik, J., Blaha, L., Muz, M., Hu, M., … Schulze, T. (2017). European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Science of The Total Environment, 601-602, 1849-1868. doi:10.1016/j.scitotenv.2017.06.032

Rousis, N. I., Bade, R., Bijlsma, L., Zuccato, E., Sancho, J. V., Hernandez, F., & Castiglioni, S. (2017). Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environmental Research, 156, 31-38. doi:10.1016/j.envres.2017.03.013

Pascual Aguilar, J. A., Andreu, V., Campo, J., Picó, Y., & Masiá, A. (2017). Pesticide occurrence in the waters of Júcar River, Spain from different farming landscapes. Science of The Total Environment, 607-608, 752-760. doi:10.1016/j.scitotenv.2017.06.176

Hook, S. E., Doan, H., Gonzago, D., Musson, D., Du, J., Kookana, R., … Kumar, A. (2018). The impacts of modern-use pesticides on shrimp aquaculture: An assessment for north eastern Australia. Ecotoxicology and Environmental Safety, 148, 770-780. doi:10.1016/j.ecoenv.2017.11.028

Commission Regulation (EC) N° 2076/2002 of 20 November 2002 (concerning the non-inclusion of certain active substances in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing these substances). (http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32002R2076&from=EN; accessed 9 November 2018).

MALDONADO, M., MALATO, S., PEREZESTRADA, L., GERNJAK, W., OLLER, I., DOMENECH, X., & PERAL, J. (2006). Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials, 138(2), 363-369. doi:10.1016/j.jhazmat.2006.05.058

Gromboni, C. F., Kamogawa, M. Y., Ferreira, A. G., Nóbrega, J. A., & Nogueira, A. R. A. (2007). Microwave-assisted photo-Fenton decomposition of chlorfenvinphos and cypermethrin in residual water. Journal of Photochemistry and Photobiology A: Chemistry, 185(1), 32-37. doi:10.1016/j.jphotochem.2006.05.005

Maldonado, M. I., Passarinho, P. C., Oller, I., Gernjak, W., Fernández, P., Blanco, J., & Malato, S. (2007). Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 185(2-3), 354-363. doi:10.1016/j.jphotochem.2006.06.036

Acero, J. L., Real, F. J., Javier Benitez, F., & González, A. (2008). Oxidation of chlorfenvinphos in ultrapure and natural waters by ozonation and photochemical processes. Water Research, 42(12), 3198-3206. doi:10.1016/j.watres.2008.03.016

Klamerth, N., Gernjak, W., Malato, S., Agüera, A., & Lendl, B. (2009). Photo-Fenton decomposition of chlorfenvinphos: Determination of reaction pathway. Water Research, 43(2), 441-449. doi:10.1016/j.watres.2008.10.013

Bojanowska-Czajka, A., Gałęzowska, A., Marty, J.-L., & Trojanowicz, M. (2010). Decomposition of pesticide chlorfenvinphos in aqueous solutions by gamma-irradiation. Journal of Radioanalytical and Nuclear Chemistry, 285(2), 215-221. doi:10.1007/s10967-010-0567-8

Sanches, S., Barreto Crespo, M. T., & Pereira, V. J. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research, 44(6), 1809-1818. doi:10.1016/j.watres.2009.12.001

Bojanowska-Czajka, A., Trojanowicz, M., Gałęzowska, A., Nichipor, H., Zimek, Z., Marty, J.-L., & Nałęcz-Jawecki, G. (2010). Radiolytic Removal of Selected Pesticides From Waters and Waste Using Ionizing Radiation. Separation Science and Technology, 45(11), 1651-1657. doi:10.1080/01496395.2010.487740

Daghrir, R., Drogui, P., & Robert, D. (2012). Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 238, 41-52. doi:10.1016/j.jphotochem.2012.04.009

Garcia-Segura, S., & Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 1-35. doi:10.1016/j.jphotochemrev.2017.01.005

Zheng, H., Ou, J. Z., Strano, M. S., Kaner, R. B., Mitchell, A., & Kalantar-zadeh, K. (2011). Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications. Advanced Functional Materials, 21(12), 2175-2196. doi:10.1002/adfm.201002477

Daniel, M. F., Desbat, B., Lassegues, J. C., Gerand, B., & Figlarz, M. (1987). Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. Journal of Solid State Chemistry, 67(2), 235-247. doi:10.1016/0022-4596(87)90359-8

Rougier, A., Portemer, F., Quédé, A., & El Marssi, M. (1999). Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Applied Surface Science, 153(1), 1-9. doi:10.1016/s0169-4332(99)00335-9

Santato, C., Odziemkowski, M., Ulmann, M., & Augustynski, J. (2001). Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications. Journal of the American Chemical Society, 123(43), 10639-10649. doi:10.1021/ja011315x

Bittencourt, C., Landers, R., Llobet, E., Correig, X., & Calderer, J. (2002). The role of oxygen partial pressure and annealing temperature on the formation of W O bonds in thin WO3films. Semiconductor Science and Technology, 17(6), 522-525. doi:10.1088/0268-1242/17/6/304

Amano, F., Tian, M., Ohtani, B., & Chen, A. (2011). Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets. Journal of Solid State Electrochemistry, 16(5), 1965-1973. doi:10.1007/s10008-011-1586-2

Wang, C.-K., Lin, C.-K., Wu, C.-L., Wang, S.-C., & Huang, J.-L. (2013). Synthesis and characterization of electrochromic plate-like tungsten oxide films by acidic treatment of electrochemical anodized tungsten. Electrochimica Acta, 112, 24-31. doi:10.1016/j.electacta.2013.07.204

Lee, S.-H., Cheong, H. M., Tracy, C. E., Mascarenhas, A., Benson, D. K., & Deb, S. K. (1999). Raman spectroscopic studies of electrochromic a-WO3. Electrochimica Acta, 44(18), 3111-3115. doi:10.1016/s0013-4686(99)00027-4

Sharifi, T., Ghayeb, Y., & Mohammadi, T. (2016). Study of conformational changes in serum albumin by binding of chlorfenvinphos using multispectroscopic techniques and molecular dynamic simulation. Monatshefte für Chemie - Chemical Monthly, 148(4), 781-791. doi:10.1007/s00706-016-1814-7

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem