- -

Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández Domene, Ramón Manuel es_ES
dc.contributor.author Roselló-Márquez, Gemma es_ES
dc.contributor.author Sánchez Tovar, Rita es_ES
dc.contributor.author Lucas-Granados, Bianca es_ES
dc.contributor.author Garcia-Anton, Jose es_ES
dc.date.accessioned 2021-01-21T04:32:19Z
dc.date.available 2021-01-21T04:32:19Z
dc.date.issued 2019-04-01 es_ES
dc.identifier.issn 1383-5866 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159615
dc.description.abstract [EN] A visible-light driven photoelectrochemical degradation process has been applied to a solution polluted with the organophosphate insecticide chlorfenvinphos. Different WO3 nanosheets/nanorods have been used as photoanodes. These nanostructured electrodes have been fabricated by anodization of tungsten and, subsequently, they have been subjected to a thermal treatment (annealing). The combined influence of annealing temperature (400¿°C and 600¿°C) and operation pH (1 and 3) on the photoelectrocatalytic behavior of these nanorods has been examined through a statistical analysis. Morphological, structural and photoelectrochemical characterizations have also been carried out. The chlorfenvinphos degradation efficiency depended both on annealing temperature and, specially, operation pH. At pH 1 and using an annealing temperature of 600¿°C, chlorfenvinphos has been effectively degraded following pseudo-first order kinetics with a coefficient of 7.8¿×¿10¿3¿min¿1, and notably mineralized (more than 65% of Total Organic Carbon decrease). es_ES
dc.description.sponsorship Authors thank for the financial support to the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R), for its help in the Laser Raman Microscope acquisition (UPOV08-3E-012) and for the co-finance by the European Social Fund. Ramon M. Fernandez Domene thanks the UPV for the concession of a post-doctoral grant (PAID-10-17) and Gemma Rosello Marquez also thanks the Generalitat Valenciana for the concession of a pre-doctoral grant (ACIF/2018/159) es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Separation and Purification Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Photoelectrochemical degradation es_ES
dc.subject WO3 nanorods es_ES
dc.subject Anodization es_ES
dc.subject Chlorfenvinphos es_ES
dc.subject Regression model es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.seppur.2018.11.049 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//UPOV08-3E-001/ES/Utilización de Desktop Microscopy System (DMS) en el campo de los materiales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F159/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Fernández Domene, RM.; Roselló-Márquez, G.; Sánchez Tovar, R.; Lucas-Granados, B.; Garcia-Anton, J. (2019). Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH. Separation and Purification Technology. 212:458-464. https://doi.org/10.1016/j.seppur.2018.11.049 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.seppur.2018.11.049 es_ES
dc.description.upvformatpinicio 458 es_ES
dc.description.upvformatpfin 464 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 212 es_ES
dc.relation.pasarela S\377124 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references World Health Organization – Regional Office for the Eastern Mediterranean (WHO EMRO). Nerve gases: Tabun (CAS 77-81-6); Sarin (CAS 107-44-8); Soman (CAS 96-64-0); VX (CAS 50782-69-9) fact sheet (http://www.emro.who.int/ceha/information-resources/nerve-gas-fact-sheet.html, accessed 9 November 2018). es_ES
dc.description.references U.S.Environmental Protection Agency. Pesticide Poisoning Handbook – Section II Insecticides (Chapter 5: Organophosphate Insecticides), (https://www.epa.gov/sites/production/files/documents/rmpp_6thed_ch5_organophosphates.pdf; accessed 9 November 2018). es_ES
dc.description.references Lartiges, S. B., & Garrigues, P. P. (1995). Degradation Kinetics of Organophosphorus and Organonitrogen Pesticides in Different Waters under Various Environmental Conditions. Environmental Science & Technology, 29(5), 1246-1254. doi:10.1021/es00005a016 es_ES
dc.description.references U.S.Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chlorfenvinphos; 1997. es_ES
dc.description.references European Chemicals Agency (ECHA). Chlorfenvinphos Information ((https://echa.europa.eu/substance-information/-/substanceinfo/100.006.758; accessed 9 November 2018). es_ES
dc.description.references Medina, D., Prieto, A., Ettiene, G., Buscema, I., & V, A. A. de. (1999). Persistence of Organophosphorus Pesticide Residues in Limón River Waters. Bulletin of Environmental Contamination and Toxicology, 63(1), 39-44. doi:10.1007/s001289900945 es_ES
dc.description.references Bailey, H. C., Elphick, J. R., Krassoi, R., Mulhall, A.-M., Lovell, A. J., & Slee, D. J. (2005). IDENTIFICATION OF CHLORFENVINPHOS TOXICITY IN A MUNICIPAL EFFLUENT IN SYDNEY, NEW SOUTH WALES, AUSTRALIA. Environmental Toxicology and Chemistry, 24(7), 1773. doi:10.1897/04-366r.1 es_ES
dc.description.references Staniszewska, M., Boniecka, H., & Gajecka, A. (2013). Organochlorine, Organophosphoric and Organotin Contaminants, Aromatic and Aliphatic Hydrocarbons and Heavy Metals in Sediments of the Ports from the Polish Part of the Vistula Lagoon (Baltic Sea). Soil and Sediment Contamination: An International Journal, 22(2), 151-173. doi:10.1080/15320383.2013.722137 es_ES
dc.description.references Belenguer, V., Martinez-Capel, F., Masiá, A., & Picó, Y. (2014). Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (Eastern Spain). Journal of Hazardous Materials, 265, 271-279. doi:10.1016/j.jhazmat.2013.11.016 es_ES
dc.description.references Oliveira, C., Alves, A., & Madeira, L. M. (2014). Treatment of water networks (waters and deposits) contaminated with chlorfenvinphos by oxidation with Fenton’s reagent. Chemical Engineering Journal, 241, 190-199. doi:10.1016/j.cej.2013.12.026 es_ES
dc.description.references Silva, E., Daam, M. A., & Cerejeira, M. J. (2015). Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins. Chemosphere, 135, 394-402. doi:10.1016/j.chemosphere.2015.05.013 es_ES
dc.description.references Kanzari, F., Asia, L., Syakti, A. D., Piram, A., Malleret, L., Mille, G., & Doumenq, P. (2015). Distribution and risk assessment of hydrocarbons (aliphatic and PAHs), polychlorinated biphenyls (PCBs), and pesticides in surface sediments from an agricultural river (Durance) and an industrialized urban lagoon (Berre lagoon), France. Environmental Monitoring and Assessment, 187(9). doi:10.1007/s10661-015-4823-9 es_ES
dc.description.references Kuzmanović, M., López-Doval, J. C., De Castro-Català, N., Guasch, H., Petrović, M., Muñoz, I., … Barceló, D. (2016). Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status. Science of The Total Environment, 540, 324-333. doi:10.1016/j.scitotenv.2015.06.112 es_ES
dc.description.references Cruzeiro, C., Pardal, M. Â., Rodrigues-Oliveira, N., Castro, L. F. C., Rocha, E., & Rocha, M. J. (2016). Multi-matrix quantification and risk assessment of pesticides in the longest river of the Iberian peninsula. Science of The Total Environment, 572, 263-272. doi:10.1016/j.scitotenv.2016.07.203 es_ES
dc.description.references Ccanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., & Barceló, D. (2016). Pesticides in the Ebro River basin: Occurrence and risk assessment. Environmental Pollution, 211, 414-424. doi:10.1016/j.envpol.2015.12.059 es_ES
dc.description.references Pinto, M. I., Burrows, H. D., Sontag, G., Vale, C., & Noronha, J. P. (2016). Priority pesticides in sediments of European coastal lagoons: A review. Marine Pollution Bulletin, 112(1-2), 6-16. doi:10.1016/j.marpolbul.2016.06.101 es_ES
dc.description.references Ccanccapa, A., Masiá, A., Andreu, V., & Picó, Y. (2016). Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain). Science of The Total Environment, 540, 200-210. doi:10.1016/j.scitotenv.2015.06.063 es_ES
dc.description.references Xie, Y., Wang, J., Wu, Y., Ren, C., Song, C., Yang, J., … Zhang, X. (2016). Using in situ bacterial communities to monitor contaminants in river sediments. Environmental Pollution, 212, 348-357. doi:10.1016/j.envpol.2016.01.031 es_ES
dc.description.references Corada-Fernández, C., Candela, L., Torres-Fuentes, N., Pintado-Herrera, M. G., Paniw, M., & González-Mazo, E. (2017). Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain). Science of The Total Environment, 605-606, 770-783. doi:10.1016/j.scitotenv.2017.06.049 es_ES
dc.description.references Kuzmanovic, M., Dolédec, S., de Castro-Catala, N., Ginebreda, A., Sabater, S., Muñoz, I., & Barceló, D. (2017). Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environmental Research, 156, 485-493. doi:10.1016/j.envres.2017.03.054 es_ES
dc.description.references Tousova, Z., Oswald, P., Slobodnik, J., Blaha, L., Muz, M., Hu, M., … Schulze, T. (2017). European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Science of The Total Environment, 601-602, 1849-1868. doi:10.1016/j.scitotenv.2017.06.032 es_ES
dc.description.references Rousis, N. I., Bade, R., Bijlsma, L., Zuccato, E., Sancho, J. V., Hernandez, F., & Castiglioni, S. (2017). Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environmental Research, 156, 31-38. doi:10.1016/j.envres.2017.03.013 es_ES
dc.description.references Pascual Aguilar, J. A., Andreu, V., Campo, J., Picó, Y., & Masiá, A. (2017). Pesticide occurrence in the waters of Júcar River, Spain from different farming landscapes. Science of The Total Environment, 607-608, 752-760. doi:10.1016/j.scitotenv.2017.06.176 es_ES
dc.description.references Hook, S. E., Doan, H., Gonzago, D., Musson, D., Du, J., Kookana, R., … Kumar, A. (2018). The impacts of modern-use pesticides on shrimp aquaculture: An assessment for north eastern Australia. Ecotoxicology and Environmental Safety, 148, 770-780. doi:10.1016/j.ecoenv.2017.11.028 es_ES
dc.description.references Commission Regulation (EC) N° 2076/2002 of 20 November 2002 (concerning the non-inclusion of certain active substances in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing these substances). (http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32002R2076&from=EN; accessed 9 November 2018). es_ES
dc.description.references MALDONADO, M., MALATO, S., PEREZESTRADA, L., GERNJAK, W., OLLER, I., DOMENECH, X., & PERAL, J. (2006). Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials, 138(2), 363-369. doi:10.1016/j.jhazmat.2006.05.058 es_ES
dc.description.references Gromboni, C. F., Kamogawa, M. Y., Ferreira, A. G., Nóbrega, J. A., & Nogueira, A. R. A. (2007). Microwave-assisted photo-Fenton decomposition of chlorfenvinphos and cypermethrin in residual water. Journal of Photochemistry and Photobiology A: Chemistry, 185(1), 32-37. doi:10.1016/j.jphotochem.2006.05.005 es_ES
dc.description.references Maldonado, M. I., Passarinho, P. C., Oller, I., Gernjak, W., Fernández, P., Blanco, J., & Malato, S. (2007). Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 185(2-3), 354-363. doi:10.1016/j.jphotochem.2006.06.036 es_ES
dc.description.references Acero, J. L., Real, F. J., Javier Benitez, F., & González, A. (2008). Oxidation of chlorfenvinphos in ultrapure and natural waters by ozonation and photochemical processes. Water Research, 42(12), 3198-3206. doi:10.1016/j.watres.2008.03.016 es_ES
dc.description.references Klamerth, N., Gernjak, W., Malato, S., Agüera, A., & Lendl, B. (2009). Photo-Fenton decomposition of chlorfenvinphos: Determination of reaction pathway. Water Research, 43(2), 441-449. doi:10.1016/j.watres.2008.10.013 es_ES
dc.description.references Bojanowska-Czajka, A., Gałęzowska, A., Marty, J.-L., & Trojanowicz, M. (2010). Decomposition of pesticide chlorfenvinphos in aqueous solutions by gamma-irradiation. Journal of Radioanalytical and Nuclear Chemistry, 285(2), 215-221. doi:10.1007/s10967-010-0567-8 es_ES
dc.description.references Sanches, S., Barreto Crespo, M. T., & Pereira, V. J. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research, 44(6), 1809-1818. doi:10.1016/j.watres.2009.12.001 es_ES
dc.description.references Bojanowska-Czajka, A., Trojanowicz, M., Gałęzowska, A., Nichipor, H., Zimek, Z., Marty, J.-L., & Nałęcz-Jawecki, G. (2010). Radiolytic Removal of Selected Pesticides From Waters and Waste Using Ionizing Radiation. Separation Science and Technology, 45(11), 1651-1657. doi:10.1080/01496395.2010.487740 es_ES
dc.description.references Daghrir, R., Drogui, P., & Robert, D. (2012). Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 238, 41-52. doi:10.1016/j.jphotochem.2012.04.009 es_ES
dc.description.references Garcia-Segura, S., & Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 1-35. doi:10.1016/j.jphotochemrev.2017.01.005 es_ES
dc.description.references Zheng, H., Ou, J. Z., Strano, M. S., Kaner, R. B., Mitchell, A., & Kalantar-zadeh, K. (2011). Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications. Advanced Functional Materials, 21(12), 2175-2196. doi:10.1002/adfm.201002477 es_ES
dc.description.references Daniel, M. F., Desbat, B., Lassegues, J. C., Gerand, B., & Figlarz, M. (1987). Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. Journal of Solid State Chemistry, 67(2), 235-247. doi:10.1016/0022-4596(87)90359-8 es_ES
dc.description.references Rougier, A., Portemer, F., Quédé, A., & El Marssi, M. (1999). Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Applied Surface Science, 153(1), 1-9. doi:10.1016/s0169-4332(99)00335-9 es_ES
dc.description.references Santato, C., Odziemkowski, M., Ulmann, M., & Augustynski, J. (2001). Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications. Journal of the American Chemical Society, 123(43), 10639-10649. doi:10.1021/ja011315x es_ES
dc.description.references Bittencourt, C., Landers, R., Llobet, E., Correig, X., & Calderer, J. (2002). The role of oxygen partial pressure and annealing temperature on the formation of W O bonds in thin WO3films. Semiconductor Science and Technology, 17(6), 522-525. doi:10.1088/0268-1242/17/6/304 es_ES
dc.description.references Amano, F., Tian, M., Ohtani, B., & Chen, A. (2011). Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets. Journal of Solid State Electrochemistry, 16(5), 1965-1973. doi:10.1007/s10008-011-1586-2 es_ES
dc.description.references Wang, C.-K., Lin, C.-K., Wu, C.-L., Wang, S.-C., & Huang, J.-L. (2013). Synthesis and characterization of electrochromic plate-like tungsten oxide films by acidic treatment of electrochemical anodized tungsten. Electrochimica Acta, 112, 24-31. doi:10.1016/j.electacta.2013.07.204 es_ES
dc.description.references Lee, S.-H., Cheong, H. M., Tracy, C. E., Mascarenhas, A., Benson, D. K., & Deb, S. K. (1999). Raman spectroscopic studies of electrochromic a-WO3. Electrochimica Acta, 44(18), 3111-3115. doi:10.1016/s0013-4686(99)00027-4 es_ES
dc.description.references Sharifi, T., Ghayeb, Y., & Mohammadi, T. (2016). Study of conformational changes in serum albumin by binding of chlorfenvinphos using multispectroscopic techniques and molecular dynamic simulation. Monatshefte für Chemie - Chemical Monthly, 148(4), 781-791. doi:10.1007/s00706-016-1814-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem