- -

Estimación de la fenología de la vegetación a partir de imágenes de satélite: el caso de la península ibérica e islas Baleares (2001-2017)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimación de la fenología de la vegetación a partir de imágenes de satélite: el caso de la península ibérica e islas Baleares (2001-2017)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Caparros-Santiago, J.A. es_ES
dc.contributor.author Rodríguez-Galiano, V.F. es_ES
dc.date.accessioned 2021-01-21T13:24:29Z
dc.date.available 2021-01-21T13:24:29Z
dc.date.issued 2020-12-28
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/159681
dc.description.abstract [EN] Phenological dynamics of vegetation is considered as an important biological indicator for understanding the functioning of terrestrial ecosystems. Land surface phenology (LSP), the study of vegetation phenology from time series of vegetation indices (IV), has provided a comprehensive overview of ecosystem dynamics. Iberian Peninsula is one of the regions with the greatest diversity of ecosystems in European continent. It is therefore an excellent study area for monitoring phenological dynamics of vegetation. The aim of this study is to analyse the spatial variability of the phenology of the vegetation of the Iberian Peninsula and Balearic Islands for the period 2001-2017. NDVI (Normalized Difference Vegetation Index) time series were generated from the surface reflectance product MOD09Q1 at a spatial resolution of 250 meters and with a composite period of 8 days. Atmospheric disturbances and noise were reduced using a Savitzky-Golay smoothing filter. Different phenological metrics or phenometrics were extracted using a threshold-based method. Results showed the existence of a different behaviour between spring and autumn phenophases in the Atlantic and Mediterranean biogeographic regions. The Mediterranean mountainous areas showed a similar phenological behaviour to the Atlantic vegetation. Biogeographic regions showed an internal variability, which may be derived from the different behaviour of land covers (e.g., natural vegetation vs. crops). es_ES
dc.description.abstract [ES] La dinámica fenológica de la vegetación es considerada un importante indicador biológico para comprender el funcionamiento de los ecosistemas terrestres. La fenología de la superficie terrestre (Land Surface phenology; LSP), el estudio de la fenología de la vegetación a partir de series temporales de índices de vegetación (IV), ha proporcionado una visión integral de la dinámica de los ecosistemas. La península ibérica es una de las regiones con mayor diversidad de ecosistemas del continente europeo. Constituye, por lo tanto, una excelente área de estudio para la monitorización de la dinámica fenológica de la vegetación. El objetivo de este estudio es analizar la variabilidad espacial de la fenología de la vegetación de la península ibérica e islas Baleares para el periodo 2001-2017. Las series temporales de NDVI (Normalized Difference Vegetation Index) fueron generadas a partir del producto de reflectancia de superficie MOD09Q1 a una resolución espacial de 250 metros y con un periodo de compuesto de 8 días. Las perturbaciones atmosféricas y el ruido de las series temporales fueron atenuadas aplicando el algoritmo de suavizado de Savitzky-Golay. Las diferentes métricas fenológicas o fenométricas fueron extraídas usando un método basado en umbrales. Los resultados pusieron de manifiesto la existencia de un comportamiento diferenciado entre las fenofases de primavera y otoño en las regiones biogeográficas atlántica y mediterránea. Las zonas montañosas mediterráneas presentaron un comportamiento fenológico similar a la vegetación atlántica. La variabilidad interna de cada región biogeográfica también puede asociarse al diferente comportamiento entre cubiertas del suelo (e.g. vegetación natural vs. cultivos). es_ES
dc.description.sponsorship El primer autor es un contratado pre-doctoral FPU financiado por el "Ministerio de Universidades" (Referencia FPU15/03758). Los autores agradecen el apoyo de los proyectos RTI2018-096561-A-I00 y US-1262552, financiados por el Ministerio de Ciencia e Innovación y la Agencia Estatal de Investigación / FEDER - Junta de Andalucía (Consejería de Economía y Conocimiento), respectivamente. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Spring es_ES
dc.subject Autumn es_ES
dc.subject Seasonality es_ES
dc.subject MODIS es_ES
dc.subject Time series es_ES
dc.subject Primavera es_ES
dc.subject Otoño es_ES
dc.subject Estacionalidad es_ES
dc.subject Series temporales es_ES
dc.title Estimación de la fenología de la vegetación a partir de imágenes de satélite: el caso de la península ibérica e islas Baleares (2001-2017) es_ES
dc.title.alternative Vegetation phenology from satellite imagery: the case of the Iberian Peninsula and Balearic Islands (2001-2017) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2020.13632
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03758/ES/FPU15%2F03758/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096561-A-I00/ES/ESTUDIO DE CAMBIOS EN LA FENOLOGIA DE LA VEGETACION DE LA PENINSULA IBERICA: LA FENOLOGIA OBSERVADA DESDE SATELITE COMO INDICADORA DE CAMBIOS EN EL CLIMA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//US-1262552/ES/Teledetección y clima: análisis de series temporales para la evaluación de la vulnerabilidad forestal al cambio climático y la estimación de cosechas en Andalucía -TelClim-/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Caparros-Santiago, J.; Rodríguez-Galiano, V. (2020). Estimación de la fenología de la vegetación a partir de imágenes de satélite: el caso de la península ibérica e islas Baleares (2001-2017). Revista de Teledetección. 0(57):25-36. https://doi.org/10.4995/raet.2020.13632 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2020.13632 es_ES
dc.description.upvformatpinicio 25 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 57 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\13632 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Adole, T., Dash, J., Atkinson, P.M., 2016. A systematic review of vegetation phenology in Africa. Ecological Informatics, 34, 117-128. https://doi.org/10.1016/j.ecoinf.2016.05.004 es_ES
dc.description.references Adole, T., Dash, J., Rodriguez-Galiano, V., Atkinson, P.M., 2019. Photoperiod controls vegetation phenology across Africa. Communications Biology, 2(1), 391. https://doi.org/10.1038/s42003-019-0636-7 es_ES
dc.description.references Ahas, R., Aasa, R., Menzel, A., Fedotova, V.G., Scheifinger, H., 2002. Changes in European spring phenology. International Journal of Climatology, 22(14), 1727-1738. https://doi.org/10.1002/joc.818 es_ES
dc.description.references Aragones, D., Rodriguez-Galiano, V.F., Caparros-Santiago, J.A., Navarro-Cerrillo, R.M., 2019. Could land surface phenology be used to discriminate Mediterranean pine species? International Journal of Applied Earth Observation and Geoinformation, 78, 281-294. https://doi.org/10.1016/j.jag.2018.11.003 es_ES
dc.description.references Asam, S., Callegari, M., Matiu, M., Fiore, G., De Gregorio, L., Jacob, A., Menzel, A., Zebisch, M., Notarnicola, C., 2018. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps-An Earth observation-based analysis. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111757 es_ES
dc.description.references Atkinson, P.M., Jeganathan, C., Dash, J., Atzberger, C., 2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123, 400-417. https://doi.org/10.1016/j.rse.2012.04.001 es_ES
dc.description.references Atzberger, C., Klisch, A., Mattiuzzi, M., Vuolo, F., 2013. Phenological metrics derived over the European continent from NDVI3g data and MODIS time series. Remote Sensing, 6(1), 257-284. https://doi.org/10.3390/rs6010257 es_ES
dc.description.references Catry, F.X., Moreira, F., Deus, E., Silva, J.S., Águas, A., 2015. Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biological Invasions, 17(11), 3163-3181. https://doi.org/10.1007/s10530-015-0943-y es_ES
dc.description.references Chen, X., Wang, D., Chen, J., Wang, C., Shen, M., 2018. The mixed pixel effect in land surface phenology: A simulation study. Remote Sensing of Environment, 211, 338-344. https://doi.org/10.1016/j.rse.2018.04.030 es_ES
dc.description.references Chen, X., Yang, Y., 2020. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001-2014. Environmental Research Letters, 15(3). https://doi.org/10.1088/1748-9326/ab6d39 es_ES
dc.description.references de Beurs, K.M., Henebry, G.M., 2005. Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 11(5), 779-790. https://doi.org/10.1111/j.1365-2486.2005.00949.x es_ES
dc.description.references EEA, 2017. Climate Change, Impacts and Vulnerability in Europe 2016: An indicator-based report. Copenhagen: Environmental Science and Engineering - European Environment Agency (EEA). es_ES
dc.description.references Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., 2007. The shuttle radar topography mission. Reviews of Geophysics, 45(2), RG2004. https://doi.org/10.1029/2005RG000183 es_ES
dc.description.references Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X., 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168-182. https://doi.org/10.1016/j.rse.2009.08.016 es_ES
dc.description.references Garonna, I., de Jong, R., Schaepman, M.E., 2016. Variability and evolution of global land surface phenology over the past three decades (1982-2012). Global Change Biology, 22(4), 1456-1468. https://doi.org/10.1111/gcb.13168 es_ES
dc.description.references Gómez-Limón, J.A., Picazo-Tadeo, A.J., 2012. Irrigated agriculture in Spain: Diagnosis and Prescriptions for Improved governance. International Journal of Water Resources Development, 28(1), 57-72. https://doi.org/10.1080/07900627.2012.640876 es_ES
dc.description.references Gonsamo, A., Chen, J.M., David, T.P., Kurz, W.A., Wu, C., 2012. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. Journal of Geophysical Research: Biogeosciences, 117(3). https://doi.org/10.1029/2012JG002070 es_ES
dc.description.references Helman, D., 2018. Land surface phenology: What do we really 'see' from space? Science of the Total Environment, 618, 665-673. https://doi.org/10.1016/j.scitotenv.2017.07.237 es_ES
dc.description.references Hird, J.N., McDermid, G.J., 2009. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment, 113(1), 248-258. https://doi.org/10.1016/j.rse.2008.09.003 es_ES
dc.description.references Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417-1434. https://doi.org/10.1080/01431168608948945 es_ES
dc.description.references Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2 es_ES
dc.description.references Ivits, E., Cherlet, M., Horion, S., Fensholt, R., 2013. Global biogeographical pattern of ecosystem functional types derived from earth observation data. Remote Sensing, 5(7), 3305-3330. https://doi.org/10.3390/rs5073305 es_ES
dc.description.references Jönsson, P., Eklundh, L., 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1824-1832. https://doi.org/10.1109/TGRS.2002.802519 es_ES
dc.description.references Jönsson, P., Eklundh, L., 2004. TIMESAT - A program for analyzing time-series of satellite sensor data. Computers and Geosciences, 30(8), 833-845. https://doi.org/10.1016/j.cageo.2004.05.006 es_ES
dc.description.references Julien, Y., Sobrino, J.A., 2009. Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30(13), 3495-3513. https://doi.org/10.1080/01431160802562255 es_ES
dc.description.references Keenan, T.F., Gray, J., Friedl, M.A., Toomey, M., Bohrer, G., Hollinger, D.Y., Munger, J.W., O'Keefe, J., Schmid, H.P., Wing, I.S., Yang, B., Richardson, A.D., 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 4(7), 598-604. https://doi.org/10.1038/nclimate2253 es_ES
dc.description.references Klosterman, S.T., Hufkens, K., Gray, J.M., Melaas, E., Sonnentag, O., Lavine, I., Mitchell, L., Norman, R., Friedl, M.A., Richardson, A.D., 2014. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences, 11(16), 4305-4320. https://doi.org/10.5194/bg-11-4305-2014 es_ES
dc.description.references Menzel, A., 2000. Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44(2), 76-81. https://doi.org/10.1007/s004840000054 es_ES
dc.description.references Menzel, A., 2002. Phenology: Its importance to the global change community: An editorial comment. Climatic Change, 54(4), 379-385. https://doi.org/10.1023/A:1016125215496 es_ES
dc.description.references Pastor-Guzman, J., Dash, J., Atkinson, P.M., 2018. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sensing of Environment, 205, 71-84. https://doi.org/10.1016/j.rse.2017.11.009 es_ES
dc.description.references Peñuelas, J., Filella, I., 2001. Phenology: Responses to a warming world. Science, 294(5543), 793-795. https://doi.org/10.1126/science.1066860 es_ES
dc.description.references Peñuelas, J., Filella, I., Zhang, X., Llorens, L., Ogaya, R., Lloret, F., Comas, P., Estiarte, M., Terradas, J., 2004. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist, 161(3), 837-846. https://doi.org/10.1111/j.1469-8137.2004.01003.x es_ES
dc.description.references Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., Zhu, X., 2019. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25(6), 1922-1940. https://doi.org/10.1111/gcb.14619 es_ES
dc.description.references Qader, S.H., Atkinson, P.M., Dash, J., 2015. Spatiotemporal variation in the terrestrial vegetation phenology of Iraq and its relation with elevation. International Journal of Applied Earth Observation and Geoinformation, 41, 107-117. https://doi.org/10.1016/j.jag.2015.04.021 es_ES
dc.description.references Ramos, A., Pereira, M.J., Soares, A., Rosário, L.D., Matos, P., Nunes, A., Branquinho, C., Pinho, P., 2015. Seasonal patterns of Mediterranean evergreen woodlands (Montado) are explained by long-term precipitation. Agricultural and Forest Meteorology, 202, 44-50. https://doi.org/10.1016/j.agrformet.2014.11.021 es_ES
dc.description.references Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173. https://doi.org/10.1016/j.agrformet.2012.09.012 es_ES
dc.description.references Rivas-Martínez, S., 1987. Memoria del mapa de series de vegetación de España. Madrid: Ministerio de Agricultura, Pesca y Alimentación -Instituto para la Conservación de la Naturaleza (ICONA). es_ES
dc.description.references Rodrigues, A., Marcal, A.R.S., Cunha, M., 2013. Monitoring vegetation dynamics inferred by satellite data using the pheno sat tool. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2096-2104. https://doi.org/10.1109/TGRS.2012.2223475 es_ES
dc.description.references Rodriguez-Galiano, V.F., Dash, J., Atkinson, P.M., 2015a. Characterising the land surface phenology of Europe using decadal MERIS data. Remote Sensing, 7(7), 9390-9409. https://doi.org/10.3390/rs70709390 es_ES
dc.description.references Rodriguez-Galiano, V.F., Dash, J., Atkinson, P.M., 2015b. Intercomparison of satellite sensor land surface phenology and ground phenology in Europe. Geophysical Research Letters, 42(7), 2253-2260. https://doi.org/10.1002/2015GL063586 es_ES
dc.description.references Rodriguez-Galiano, V.F., Sanchez-Castillo, M., Dash, J., Atkinson, P.M., Ojeda-Zujar, J., 2016. Modelling interannual variation in the spring and autumn land surface phenology of the European forest. Biogeosciences, 13(11), 3305-3317. https://doi.org/10.5194/bg-13-3305-2016 es_ES
dc.description.references Savitzky, A., Golay, M.J.E., 1964. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047 es_ES
dc.description.references Schaber, J., Badeck, F.W., 2005. Plant phenology in Germany over the 20th century. Regional Environmental Change, 5(1), 37-46. https://doi.org/10.1007/s10113-004-0094-7 es_ES
dc.description.references Sobrino, J.A., Julien, Y., Soria, G., 2013. Phenology estimation from meteosat second generation data. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1653-1659. https://doi.org/10.1109/JSTARS.2013.2259577 es_ES
dc.description.references Tong, X., Tian, F., Brandt, M., Liu, Y., Zhang, W., Fensholt, R., 2019. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992-2012. Remote Sensing of Environment, 232. https://doi.org/10.1016/j.rse.2019.111307 es_ES
dc.description.references Valderrama-Landeros, L.H., España-Boquera, M.L., Baret, F., 2016. Deforestation in Michoacan, Mexico, from CYCLOPES-LAI Time Series (2000-2006). Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(12), 5398-5405. https://doi.org/10.1109/JSTARS.2016.2597742 es_ES
dc.description.references Verger, A., Filella, I., Baret, F., Peñuelas, J., 2016. Caracterización de la fenología de la vegetación a escala global mediante series temporales SPOT VEGETATION. Revista de Teledeteccion, 2016(47), 1-11. https://doi.org/10.4995/raet.2016.5718 es_ES
dc.description.references Vermote, E., 2015. MOD09A1 MODIS/terra surface reflectance 8-day L3 global 500m SIN grid V006 [Dataset]. NASA EOSDIS Land Processes DAAC. Accessed 2018-02-25 from https://doi.org/10.5067/MODIS/MOD09Q1.006. es_ES
dc.description.references Vrieling, A., De Leeuw, J., Said, M.Y., 2013. Length of growing period over africa: Variability and trends from 30 years of NDVI time series. Remote Sensing, 5(2), 982-1000. https://doi.org/10.3390/rs5020982 es_ES
dc.description.references Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A.K., Wang, T., Zurita-Milla, R., Oosterbeek, K., O'Connor, B., Paganini, M., 2018. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 215, 517-529. https://doi.org/10.1016/j.rse.2018.03.014 es_ES
dc.description.references White, M.A., de Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., O'Keefe, J., Zhang, G., Nemani, R.R., van Leeuwen, W.J.D., Brown, J.F., de Wit, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A.S., Kimball, J., Schwartz, M.D., Baldocchi, D.D., Lee, J.T., Lauenroth, W.K., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15(10), 2335-2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x es_ES
dc.description.references Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem