- -

Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation

Mostrar el registro completo del ítem

Muñoz-Cobo, J.; Berna, C. (2019). Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation. Entropy. 21(2):1-37. https://doi.org/10.3390/e21020181

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159834

Ficheros en el ítem

Metadatos del ítem

Título: Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation
Autor: Muñoz-Cobo, José-Luis Berna, Cesar
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] In this paper first, we review the physical root bases of chemical reaction networks as a Markov process in multidimensional vector space. Then we study the chemical reactions from a microscopic point of view, to ...[+]
Palabras clave: Maximum entropy principle , Chemical master equation , Chemical propensity , Updating probability distribution functions , Chemical reaction networks
Derechos de uso: Reconocimiento (by)
Fuente:
Entropy. (issn: 1099-4300 )
DOI: 10.3390/e21020181
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/e21020181
Agradecimientos:
This research received no external funding This paper is devoted to Raphael B. Perez, Emeritus Professor of the University of Tennessee at Knoxville, to celebrate his 90 years birth day.
Tipo: Artículo

References

McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal of Applied Probability, 4(3), 413-478. doi:10.2307/3212214

Nicolis, G., & Babloyantz, A. (1969). Fluctuations in Open Systems. The Journal of Chemical Physics, 51(6), 2632-2637. doi:10.1063/1.1672388

Malek-Mansour, M., & Nicolis, G. (1975). A master equation description of local fluctuations. Journal of Statistical Physics, 13(3), 197-217. doi:10.1007/bf01012838 [+]
McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal of Applied Probability, 4(3), 413-478. doi:10.2307/3212214

Nicolis, G., & Babloyantz, A. (1969). Fluctuations in Open Systems. The Journal of Chemical Physics, 51(6), 2632-2637. doi:10.1063/1.1672388

Malek-Mansour, M., & Nicolis, G. (1975). A master equation description of local fluctuations. Journal of Statistical Physics, 13(3), 197-217. doi:10.1007/bf01012838

Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications, 188(1-3), 404-425. doi:10.1016/0378-4371(92)90283-v

Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637

Salis, H., & Kaznessis, Y. (2005). Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. The Journal of Chemical Physics, 122(5), 054103. doi:10.1063/1.1835951

Cao, Y., Gillespie, D. T., & Petzold, L. R. (2005). The slow-scale stochastic simulation algorithm. The Journal of Chemical Physics, 122(1), 014116. doi:10.1063/1.1824902

Munsky, B., & Khammash, M. (2006). The finite state projection algorithm for the solution of the chemical master equation. The Journal of Chemical Physics, 124(4), 044104. doi:10.1063/1.2145882

Smadbeck, P., & Kaznessis, Y. N. (2012). Efficient moment matrix generation for arbitrary chemical networks. Chemical Engineering Science, 84, 612-618. doi:10.1016/j.ces.2012.08.031

Sotiropoulos, V., & Kaznessis, Y. N. (2011). Analytical derivation of moment equations in stochastic chemical kinetics. Chemical Engineering Science, 66(3), 268-277. doi:10.1016/j.ces.2010.10.024

Gillespie, C. S. (2009). Moment-closure approximations for mass-action models. IET Systems Biology, 3(1), 52-58. doi:10.1049/iet-syb:20070031

Grima, R. (2012). A study of the accuracy of moment-closure approximations for stochastic chemical kinetics. The Journal of Chemical Physics, 136(15), 154105. doi:10.1063/1.3702848

Grima, R. (2015). Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Physical Review E, 92(4). doi:10.1103/physreve.92.042124

Grima, R. (2010). An effective rate equation approach to reaction kinetics in small volumes: Theory and application to biochemical reactions in nonequilibrium steady-state conditions. The Journal of Chemical Physics, 133(3), 035101. doi:10.1063/1.3454685

Schnoerr, D., Sanguinetti, G., & Grima, R. (2015). Comparison of different moment-closure approximations for stochastic chemical kinetics. The Journal of Chemical Physics, 143(18), 185101. doi:10.1063/1.4934990

Schnoerr, D., Sanguinetti, G., & Grima, R. (2017). Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. Journal of Physics A: Mathematical and Theoretical, 50(9), 093001. doi:10.1088/1751-8121/aa54d9

Hasenauer, J., Wolf, V., Kazeroonian, A., & Theis, F. J. (2013). Method of conditional moments (MCM) for the Chemical Master Equation. Journal of Mathematical Biology, 69(3), 687-735. doi:10.1007/s00285-013-0711-5

Singh, A., & Hespanha, J. P. (2011). Approximate Moment Dynamics for Chemically Reacting Systems. IEEE Transactions on Automatic Control, 56(2), 414-418. doi:10.1109/tac.2010.2088631

Ruess, J., Milias-Argeitis, A., Summers, S., & Lygeros, J. (2011). Moment estimation for chemically reacting systems by extended Kalman filtering. The Journal of Chemical Physics, 135(16), 165102. doi:10.1063/1.3654135

Kazeroonian, A., Fröhlich, F., Raue, A., Theis, F. J., & Hasenauer, J. (2016). CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. PLOS ONE, 11(1), e0146732. doi:10.1371/journal.pone.0146732

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623-656. doi:10.1002/j.1538-7305.1948.tb00917.x

Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Physical Review, 106(4), 620-630. doi:10.1103/physrev.106.620

Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939-952. doi:10.1109/proc.1982.12425

Mead, L. R., & Papanicolaou, N. (1984). Maximum entropy in the problem of moments. Journal of Mathematical Physics, 25(8), 2404-2417. doi:10.1063/1.526446

Montroll, E. W., & Shlesinger, M. F. (1983). Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails. Journal of Statistical Physics, 32(2), 209-230. doi:10.1007/bf01012708

Shore, J., & Johnson, R. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory, 26(1), 26-37. doi:10.1109/tit.1980.1056144

Muñoz-Cobo, J.-L., Mendizábal, R., Miquel, A., Berna, C., & Escrivá, A. (2017). Use of the Principles of Maximum Entropy and Maximum Relative Entropy for the Determination of Uncertain Parameter Distributions in Engineering Applications. Entropy, 19(9), 486. doi:10.3390/e19090486

Ruppeiner, G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Reviews of Modern Physics, 67(3), 605-659. doi:10.1103/revmodphys.67.605

Gillespie, D. T., Petzold, L. R., & Seitaridou, E. (2014). Validity conditions for stochastic chemical kinetics in diffusion-limited systems. The Journal of Chemical Physics, 140(5), 054111. doi:10.1063/1.4863990

The chemical basis of morphogenesis. (1952). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641), 37-72. doi:10.1098/rstb.1952.0012

Castets, V., Dulos, E., Boissonade, J., & De Kepper, P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Physical Review Letters, 64(24), 2953-2956. doi:10.1103/physrevlett.64.2953

Maini, P. K., Painter, K. J., & Nguyen Phong Chau, H. (1997). Spatial pattern formation in chemical and biological systems. Journal of the Chemical Society, Faraday Transactions, 93(20), 3601-3610. doi:10.1039/a702602a

Ghosh, A., Leier, A., & Marquez-Lago, T. T. (2015). The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions. Theoretical Biology and Medical Modelling, 12(1). doi:10.1186/s12976-015-0001-6

Samoilov, M. S., & Arkin, A. P. (2006). Deviant effects in molecular reaction pathways. Nature Biotechnology, 24(10), 1235-1240. doi:10.1038/nbt1253

Muoz-Cobo, J. L., Verdú, G., Jiménez, P., & Pea, J. (1986). Stimulated recombination in open systems. Physical Review A, 34(3), 2524-2527. doi:10.1103/physreva.34.2524

Grima, R., Schmidt, D. R., & Newman, T. J. (2012). Steady-state fluctuations of a genetic feedback loop: An exact solution. The Journal of Chemical Physics, 137(3), 035104. doi:10.1063/1.4736721

Laurenzi, I. J. (2000). An analytical solution of the stochastic master equation for reversible bimolecular reaction kinetics. The Journal of Chemical Physics, 113(8), 3315-3322. doi:10.1063/1.1287273

Woodbury, A. D. (2004). A FORTRAN program to produce minimum relative entropy distributions. Computers & Geosciences, 30(1), 131-138. doi:10.1016/j.cageo.2003.09.001

Caticha, A., & Preuss, R. (2004). Maximum entropy and Bayesian data analysis: Entropic prior distributions. Physical Review E, 70(4). doi:10.1103/physreve.70.046127

Cao, J. (2011). Michaelis−Menten Equation and Detailed Balance in Enzymatic Networks. The Journal of Physical Chemistry B, 115(18), 5493-5498. doi:10.1021/jp110924w

Choi, B., Rempala, G. A., & Kim, J. K. (2017). Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Scientific Reports, 7(1). doi:10.1038/s41598-017-17072-z

Vlysidis, M., & Kaznessis, Y. (2018). On Differences between Deterministic and Stochastic Models of Chemical Reactions: Schlögl Solved with ZI-Closure. Entropy, 20(9), 678. doi:10.3390/e20090678

Gómez-Uribe, C. A., & Verghese, G. C. (2007). Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations. The Journal of Chemical Physics, 126(2), 024109. doi:10.1063/1.2408422

Gibson, M. A., & Bruck, J. (2000). Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. The Journal of Physical Chemistry A, 104(9), 1876-1889. doi:10.1021/jp993732q

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem