- -

Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz-Cobo, José-Luis es_ES
dc.contributor.author Berna, Cesar es_ES
dc.date.accessioned 2021-01-26T04:31:43Z
dc.date.available 2021-01-26T04:31:43Z
dc.date.issued 2019-02 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159834
dc.description.abstract [EN] In this paper first, we review the physical root bases of chemical reaction networks as a Markov process in multidimensional vector space. Then we study the chemical reactions from a microscopic point of view, to obtain the expression for the propensities for the different reactions that can happen in the network. These chemical propensities, at a given time, depend on the system state at that time, and do not depend on the state at an earlier time indicating that we are dealing with Markov processes. Then the Chemical Master Equation (CME) is deduced for an arbitrary chemical network from a probability balance and it is expressed in terms of the reaction propensities. This CME governs the dynamics of the chemical system. Due to the difficulty to solve this equation two methods are studied, the first one is the probability generating function method or z-transform, which permits to obtain the evolution of the factorial moment of the system with time in an easiest way or after some manipulation the evolution of the polynomial moments. The second method studied is the expansion of the CME in terms of an order parameter (system volume). In this case we study first the expansion of the CME using the propensities obtained previously and splitting the molecular concentration into a deterministic part and a random part. An expression in terms of multinomial coefficients is obtained for the evolution of the probability of the random part. Then we study how to reconstruct the probability distribution from the moments using the maximum entropy principle. Finally, the previous methods are applied to simple chemical networks and the consistency of these methods is studied. es_ES
dc.description.sponsorship This research received no external funding This paper is devoted to Raphael B. Perez, Emeritus Professor of the University of Tennessee at Knoxville, to celebrate his 90 years birth day. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Maximum entropy principle es_ES
dc.subject Chemical master equation es_ES
dc.subject Chemical propensity es_ES
dc.subject Updating probability distribution functions es_ES
dc.subject Chemical reaction networks es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e21020181 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Muñoz-Cobo, J.; Berna, C. (2019). Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation. Entropy. 21(2):1-37. https://doi.org/10.3390/e21020181 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e21020181 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 37 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\407943 es_ES
dc.description.references McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal of Applied Probability, 4(3), 413-478. doi:10.2307/3212214 es_ES
dc.description.references Nicolis, G., & Babloyantz, A. (1969). Fluctuations in Open Systems. The Journal of Chemical Physics, 51(6), 2632-2637. doi:10.1063/1.1672388 es_ES
dc.description.references Malek-Mansour, M., & Nicolis, G. (1975). A master equation description of local fluctuations. Journal of Statistical Physics, 13(3), 197-217. doi:10.1007/bf01012838 es_ES
dc.description.references Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications, 188(1-3), 404-425. doi:10.1016/0378-4371(92)90283-v es_ES
dc.description.references Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637 es_ES
dc.description.references Salis, H., & Kaznessis, Y. (2005). Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. The Journal of Chemical Physics, 122(5), 054103. doi:10.1063/1.1835951 es_ES
dc.description.references Cao, Y., Gillespie, D. T., & Petzold, L. R. (2005). The slow-scale stochastic simulation algorithm. The Journal of Chemical Physics, 122(1), 014116. doi:10.1063/1.1824902 es_ES
dc.description.references Munsky, B., & Khammash, M. (2006). The finite state projection algorithm for the solution of the chemical master equation. The Journal of Chemical Physics, 124(4), 044104. doi:10.1063/1.2145882 es_ES
dc.description.references Smadbeck, P., & Kaznessis, Y. N. (2012). Efficient moment matrix generation for arbitrary chemical networks. Chemical Engineering Science, 84, 612-618. doi:10.1016/j.ces.2012.08.031 es_ES
dc.description.references Sotiropoulos, V., & Kaznessis, Y. N. (2011). Analytical derivation of moment equations in stochastic chemical kinetics. Chemical Engineering Science, 66(3), 268-277. doi:10.1016/j.ces.2010.10.024 es_ES
dc.description.references Gillespie, C. S. (2009). Moment-closure approximations for mass-action models. IET Systems Biology, 3(1), 52-58. doi:10.1049/iet-syb:20070031 es_ES
dc.description.references Grima, R. (2012). A study of the accuracy of moment-closure approximations for stochastic chemical kinetics. The Journal of Chemical Physics, 136(15), 154105. doi:10.1063/1.3702848 es_ES
dc.description.references Grima, R. (2015). Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Physical Review E, 92(4). doi:10.1103/physreve.92.042124 es_ES
dc.description.references Grima, R. (2010). An effective rate equation approach to reaction kinetics in small volumes: Theory and application to biochemical reactions in nonequilibrium steady-state conditions. The Journal of Chemical Physics, 133(3), 035101. doi:10.1063/1.3454685 es_ES
dc.description.references Schnoerr, D., Sanguinetti, G., & Grima, R. (2015). Comparison of different moment-closure approximations for stochastic chemical kinetics. The Journal of Chemical Physics, 143(18), 185101. doi:10.1063/1.4934990 es_ES
dc.description.references Schnoerr, D., Sanguinetti, G., & Grima, R. (2017). Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. Journal of Physics A: Mathematical and Theoretical, 50(9), 093001. doi:10.1088/1751-8121/aa54d9 es_ES
dc.description.references Hasenauer, J., Wolf, V., Kazeroonian, A., & Theis, F. J. (2013). Method of conditional moments (MCM) for the Chemical Master Equation. Journal of Mathematical Biology, 69(3), 687-735. doi:10.1007/s00285-013-0711-5 es_ES
dc.description.references Singh, A., & Hespanha, J. P. (2011). Approximate Moment Dynamics for Chemically Reacting Systems. IEEE Transactions on Automatic Control, 56(2), 414-418. doi:10.1109/tac.2010.2088631 es_ES
dc.description.references Ruess, J., Milias-Argeitis, A., Summers, S., & Lygeros, J. (2011). Moment estimation for chemically reacting systems by extended Kalman filtering. The Journal of Chemical Physics, 135(16), 165102. doi:10.1063/1.3654135 es_ES
dc.description.references Kazeroonian, A., Fröhlich, F., Raue, A., Theis, F. J., & Hasenauer, J. (2016). CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. PLOS ONE, 11(1), e0146732. doi:10.1371/journal.pone.0146732 es_ES
dc.description.references Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x es_ES
dc.description.references Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623-656. doi:10.1002/j.1538-7305.1948.tb00917.x es_ES
dc.description.references Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Physical Review, 106(4), 620-630. doi:10.1103/physrev.106.620 es_ES
dc.description.references Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939-952. doi:10.1109/proc.1982.12425 es_ES
dc.description.references Mead, L. R., & Papanicolaou, N. (1984). Maximum entropy in the problem of moments. Journal of Mathematical Physics, 25(8), 2404-2417. doi:10.1063/1.526446 es_ES
dc.description.references Montroll, E. W., & Shlesinger, M. F. (1983). Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails. Journal of Statistical Physics, 32(2), 209-230. doi:10.1007/bf01012708 es_ES
dc.description.references Shore, J., & Johnson, R. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory, 26(1), 26-37. doi:10.1109/tit.1980.1056144 es_ES
dc.description.references Muñoz-Cobo, J.-L., Mendizábal, R., Miquel, A., Berna, C., & Escrivá, A. (2017). Use of the Principles of Maximum Entropy and Maximum Relative Entropy for the Determination of Uncertain Parameter Distributions in Engineering Applications. Entropy, 19(9), 486. doi:10.3390/e19090486 es_ES
dc.description.references Ruppeiner, G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Reviews of Modern Physics, 67(3), 605-659. doi:10.1103/revmodphys.67.605 es_ES
dc.description.references Gillespie, D. T., Petzold, L. R., & Seitaridou, E. (2014). Validity conditions for stochastic chemical kinetics in diffusion-limited systems. The Journal of Chemical Physics, 140(5), 054111. doi:10.1063/1.4863990 es_ES
dc.description.references The chemical basis of morphogenesis. (1952). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641), 37-72. doi:10.1098/rstb.1952.0012 es_ES
dc.description.references Castets, V., Dulos, E., Boissonade, J., & De Kepper, P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Physical Review Letters, 64(24), 2953-2956. doi:10.1103/physrevlett.64.2953 es_ES
dc.description.references Maini, P. K., Painter, K. J., & Nguyen Phong Chau, H. (1997). Spatial pattern formation in chemical and biological systems. Journal of the Chemical Society, Faraday Transactions, 93(20), 3601-3610. doi:10.1039/a702602a es_ES
dc.description.references Ghosh, A., Leier, A., & Marquez-Lago, T. T. (2015). The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions. Theoretical Biology and Medical Modelling, 12(1). doi:10.1186/s12976-015-0001-6 es_ES
dc.description.references Samoilov, M. S., & Arkin, A. P. (2006). Deviant effects in molecular reaction pathways. Nature Biotechnology, 24(10), 1235-1240. doi:10.1038/nbt1253 es_ES
dc.description.references Muoz-Cobo, J. L., Verdú, G., Jiménez, P., & Pea, J. (1986). Stimulated recombination in open systems. Physical Review A, 34(3), 2524-2527. doi:10.1103/physreva.34.2524 es_ES
dc.description.references Grima, R., Schmidt, D. R., & Newman, T. J. (2012). Steady-state fluctuations of a genetic feedback loop: An exact solution. The Journal of Chemical Physics, 137(3), 035104. doi:10.1063/1.4736721 es_ES
dc.description.references Laurenzi, I. J. (2000). An analytical solution of the stochastic master equation for reversible bimolecular reaction kinetics. The Journal of Chemical Physics, 113(8), 3315-3322. doi:10.1063/1.1287273 es_ES
dc.description.references Woodbury, A. D. (2004). A FORTRAN program to produce minimum relative entropy distributions. Computers & Geosciences, 30(1), 131-138. doi:10.1016/j.cageo.2003.09.001 es_ES
dc.description.references Caticha, A., & Preuss, R. (2004). Maximum entropy and Bayesian data analysis: Entropic prior distributions. Physical Review E, 70(4). doi:10.1103/physreve.70.046127 es_ES
dc.description.references Cao, J. (2011). Michaelis−Menten Equation and Detailed Balance in Enzymatic Networks. The Journal of Physical Chemistry B, 115(18), 5493-5498. doi:10.1021/jp110924w es_ES
dc.description.references Choi, B., Rempala, G. A., & Kim, J. K. (2017). Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Scientific Reports, 7(1). doi:10.1038/s41598-017-17072-z es_ES
dc.description.references Vlysidis, M., & Kaznessis, Y. (2018). On Differences between Deterministic and Stochastic Models of Chemical Reactions: Schlögl Solved with ZI-Closure. Entropy, 20(9), 678. doi:10.3390/e20090678 es_ES
dc.description.references Gómez-Uribe, C. A., & Verghese, G. C. (2007). Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations. The Journal of Chemical Physics, 126(2), 024109. doi:10.1063/1.2408422 es_ES
dc.description.references Gibson, M. A., & Bruck, J. (2000). Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. The Journal of Physical Chemistry A, 104(9), 1876-1889. doi:10.1021/jp993732q es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem