Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz-Cobo, José-Luis | es_ES |
dc.contributor.author | Berna, Cesar | es_ES |
dc.date.accessioned | 2021-01-26T04:31:43Z | |
dc.date.available | 2021-01-26T04:31:43Z | |
dc.date.issued | 2019-02 | es_ES |
dc.identifier.issn | 1099-4300 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159834 | |
dc.description.abstract | [EN] In this paper first, we review the physical root bases of chemical reaction networks as a Markov process in multidimensional vector space. Then we study the chemical reactions from a microscopic point of view, to obtain the expression for the propensities for the different reactions that can happen in the network. These chemical propensities, at a given time, depend on the system state at that time, and do not depend on the state at an earlier time indicating that we are dealing with Markov processes. Then the Chemical Master Equation (CME) is deduced for an arbitrary chemical network from a probability balance and it is expressed in terms of the reaction propensities. This CME governs the dynamics of the chemical system. Due to the difficulty to solve this equation two methods are studied, the first one is the probability generating function method or z-transform, which permits to obtain the evolution of the factorial moment of the system with time in an easiest way or after some manipulation the evolution of the polynomial moments. The second method studied is the expansion of the CME in terms of an order parameter (system volume). In this case we study first the expansion of the CME using the propensities obtained previously and splitting the molecular concentration into a deterministic part and a random part. An expression in terms of multinomial coefficients is obtained for the evolution of the probability of the random part. Then we study how to reconstruct the probability distribution from the moments using the maximum entropy principle. Finally, the previous methods are applied to simple chemical networks and the consistency of these methods is studied. | es_ES |
dc.description.sponsorship | This research received no external funding This paper is devoted to Raphael B. Perez, Emeritus Professor of the University of Tennessee at Knoxville, to celebrate his 90 years birth day. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Maximum entropy principle | es_ES |
dc.subject | Chemical master equation | es_ES |
dc.subject | Chemical propensity | es_ES |
dc.subject | Updating probability distribution functions | es_ES |
dc.subject | Chemical reaction networks | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e21020181 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Muñoz-Cobo, J.; Berna, C. (2019). Chemical Kinetics Roots and Methods to Obtain the Probability Distribution Function Evolution of Reactants and Products in Chemical Networks Governed by a Master Equation. Entropy. 21(2):1-37. https://doi.org/10.3390/e21020181 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/e21020181 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 37 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\407943 | es_ES |
dc.description.references | McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal of Applied Probability, 4(3), 413-478. doi:10.2307/3212214 | es_ES |
dc.description.references | Nicolis, G., & Babloyantz, A. (1969). Fluctuations in Open Systems. The Journal of Chemical Physics, 51(6), 2632-2637. doi:10.1063/1.1672388 | es_ES |
dc.description.references | Malek-Mansour, M., & Nicolis, G. (1975). A master equation description of local fluctuations. Journal of Statistical Physics, 13(3), 197-217. doi:10.1007/bf01012838 | es_ES |
dc.description.references | Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications, 188(1-3), 404-425. doi:10.1016/0378-4371(92)90283-v | es_ES |
dc.description.references | Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637 | es_ES |
dc.description.references | Salis, H., & Kaznessis, Y. (2005). Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. The Journal of Chemical Physics, 122(5), 054103. doi:10.1063/1.1835951 | es_ES |
dc.description.references | Cao, Y., Gillespie, D. T., & Petzold, L. R. (2005). The slow-scale stochastic simulation algorithm. The Journal of Chemical Physics, 122(1), 014116. doi:10.1063/1.1824902 | es_ES |
dc.description.references | Munsky, B., & Khammash, M. (2006). The finite state projection algorithm for the solution of the chemical master equation. The Journal of Chemical Physics, 124(4), 044104. doi:10.1063/1.2145882 | es_ES |
dc.description.references | Smadbeck, P., & Kaznessis, Y. N. (2012). Efficient moment matrix generation for arbitrary chemical networks. Chemical Engineering Science, 84, 612-618. doi:10.1016/j.ces.2012.08.031 | es_ES |
dc.description.references | Sotiropoulos, V., & Kaznessis, Y. N. (2011). Analytical derivation of moment equations in stochastic chemical kinetics. Chemical Engineering Science, 66(3), 268-277. doi:10.1016/j.ces.2010.10.024 | es_ES |
dc.description.references | Gillespie, C. S. (2009). Moment-closure approximations for mass-action models. IET Systems Biology, 3(1), 52-58. doi:10.1049/iet-syb:20070031 | es_ES |
dc.description.references | Grima, R. (2012). A study of the accuracy of moment-closure approximations for stochastic chemical kinetics. The Journal of Chemical Physics, 136(15), 154105. doi:10.1063/1.3702848 | es_ES |
dc.description.references | Grima, R. (2015). Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Physical Review E, 92(4). doi:10.1103/physreve.92.042124 | es_ES |
dc.description.references | Grima, R. (2010). An effective rate equation approach to reaction kinetics in small volumes: Theory and application to biochemical reactions in nonequilibrium steady-state conditions. The Journal of Chemical Physics, 133(3), 035101. doi:10.1063/1.3454685 | es_ES |
dc.description.references | Schnoerr, D., Sanguinetti, G., & Grima, R. (2015). Comparison of different moment-closure approximations for stochastic chemical kinetics. The Journal of Chemical Physics, 143(18), 185101. doi:10.1063/1.4934990 | es_ES |
dc.description.references | Schnoerr, D., Sanguinetti, G., & Grima, R. (2017). Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. Journal of Physics A: Mathematical and Theoretical, 50(9), 093001. doi:10.1088/1751-8121/aa54d9 | es_ES |
dc.description.references | Hasenauer, J., Wolf, V., Kazeroonian, A., & Theis, F. J. (2013). Method of conditional moments (MCM) for the Chemical Master Equation. Journal of Mathematical Biology, 69(3), 687-735. doi:10.1007/s00285-013-0711-5 | es_ES |
dc.description.references | Singh, A., & Hespanha, J. P. (2011). Approximate Moment Dynamics for Chemically Reacting Systems. IEEE Transactions on Automatic Control, 56(2), 414-418. doi:10.1109/tac.2010.2088631 | es_ES |
dc.description.references | Ruess, J., Milias-Argeitis, A., Summers, S., & Lygeros, J. (2011). Moment estimation for chemically reacting systems by extended Kalman filtering. The Journal of Chemical Physics, 135(16), 165102. doi:10.1063/1.3654135 | es_ES |
dc.description.references | Kazeroonian, A., Fröhlich, F., Raue, A., Theis, F. J., & Hasenauer, J. (2016). CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. PLOS ONE, 11(1), e0146732. doi:10.1371/journal.pone.0146732 | es_ES |
dc.description.references | Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x | es_ES |
dc.description.references | Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623-656. doi:10.1002/j.1538-7305.1948.tb00917.x | es_ES |
dc.description.references | Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Physical Review, 106(4), 620-630. doi:10.1103/physrev.106.620 | es_ES |
dc.description.references | Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939-952. doi:10.1109/proc.1982.12425 | es_ES |
dc.description.references | Mead, L. R., & Papanicolaou, N. (1984). Maximum entropy in the problem of moments. Journal of Mathematical Physics, 25(8), 2404-2417. doi:10.1063/1.526446 | es_ES |
dc.description.references | Montroll, E. W., & Shlesinger, M. F. (1983). Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails. Journal of Statistical Physics, 32(2), 209-230. doi:10.1007/bf01012708 | es_ES |
dc.description.references | Shore, J., & Johnson, R. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory, 26(1), 26-37. doi:10.1109/tit.1980.1056144 | es_ES |
dc.description.references | Muñoz-Cobo, J.-L., Mendizábal, R., Miquel, A., Berna, C., & Escrivá, A. (2017). Use of the Principles of Maximum Entropy and Maximum Relative Entropy for the Determination of Uncertain Parameter Distributions in Engineering Applications. Entropy, 19(9), 486. doi:10.3390/e19090486 | es_ES |
dc.description.references | Ruppeiner, G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Reviews of Modern Physics, 67(3), 605-659. doi:10.1103/revmodphys.67.605 | es_ES |
dc.description.references | Gillespie, D. T., Petzold, L. R., & Seitaridou, E. (2014). Validity conditions for stochastic chemical kinetics in diffusion-limited systems. The Journal of Chemical Physics, 140(5), 054111. doi:10.1063/1.4863990 | es_ES |
dc.description.references | The chemical basis of morphogenesis. (1952). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641), 37-72. doi:10.1098/rstb.1952.0012 | es_ES |
dc.description.references | Castets, V., Dulos, E., Boissonade, J., & De Kepper, P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Physical Review Letters, 64(24), 2953-2956. doi:10.1103/physrevlett.64.2953 | es_ES |
dc.description.references | Maini, P. K., Painter, K. J., & Nguyen Phong Chau, H. (1997). Spatial pattern formation in chemical and biological systems. Journal of the Chemical Society, Faraday Transactions, 93(20), 3601-3610. doi:10.1039/a702602a | es_ES |
dc.description.references | Ghosh, A., Leier, A., & Marquez-Lago, T. T. (2015). The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions. Theoretical Biology and Medical Modelling, 12(1). doi:10.1186/s12976-015-0001-6 | es_ES |
dc.description.references | Samoilov, M. S., & Arkin, A. P. (2006). Deviant effects in molecular reaction pathways. Nature Biotechnology, 24(10), 1235-1240. doi:10.1038/nbt1253 | es_ES |
dc.description.references | Muoz-Cobo, J. L., Verdú, G., Jiménez, P., & Pea, J. (1986). Stimulated recombination in open systems. Physical Review A, 34(3), 2524-2527. doi:10.1103/physreva.34.2524 | es_ES |
dc.description.references | Grima, R., Schmidt, D. R., & Newman, T. J. (2012). Steady-state fluctuations of a genetic feedback loop: An exact solution. The Journal of Chemical Physics, 137(3), 035104. doi:10.1063/1.4736721 | es_ES |
dc.description.references | Laurenzi, I. J. (2000). An analytical solution of the stochastic master equation for reversible bimolecular reaction kinetics. The Journal of Chemical Physics, 113(8), 3315-3322. doi:10.1063/1.1287273 | es_ES |
dc.description.references | Woodbury, A. D. (2004). A FORTRAN program to produce minimum relative entropy distributions. Computers & Geosciences, 30(1), 131-138. doi:10.1016/j.cageo.2003.09.001 | es_ES |
dc.description.references | Caticha, A., & Preuss, R. (2004). Maximum entropy and Bayesian data analysis: Entropic prior distributions. Physical Review E, 70(4). doi:10.1103/physreve.70.046127 | es_ES |
dc.description.references | Cao, J. (2011). Michaelis−Menten Equation and Detailed Balance in Enzymatic Networks. The Journal of Physical Chemistry B, 115(18), 5493-5498. doi:10.1021/jp110924w | es_ES |
dc.description.references | Choi, B., Rempala, G. A., & Kim, J. K. (2017). Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Scientific Reports, 7(1). doi:10.1038/s41598-017-17072-z | es_ES |
dc.description.references | Vlysidis, M., & Kaznessis, Y. (2018). On Differences between Deterministic and Stochastic Models of Chemical Reactions: Schlögl Solved with ZI-Closure. Entropy, 20(9), 678. doi:10.3390/e20090678 | es_ES |
dc.description.references | Gómez-Uribe, C. A., & Verghese, G. C. (2007). Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations. The Journal of Chemical Physics, 126(2), 024109. doi:10.1063/1.2408422 | es_ES |
dc.description.references | Gibson, M. A., & Bruck, J. (2000). Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. The Journal of Physical Chemistry A, 104(9), 1876-1889. doi:10.1021/jp993732q | es_ES |