- -

Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue

Show simple item record

Files in this item

dc.contributor.author Marco, Miguel es_ES
dc.contributor.author Infante-Garcia, Diego es_ES
dc.contributor.author Diaz-Alvarez, Jose es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.date.accessioned 2021-01-26T04:31:50Z
dc.date.available 2021-01-26T04:31:50Z
dc.date.issued 2019-03 es_ES
dc.identifier.issn 0301-679X es_ES
dc.identifier.uri http://hdl.handle.net/10251/159835
dc.description.abstract [EN] In fatigue problems, an accurate estimation of the propagation direction is important for life prediction. We identify the most relevant factors that affect the crack orientation during the propagation stage of fretting fatigue cracks, arising from complete contacts. Contrary to what initially expected, parameters such as normal load, cyclic bulk load, etc. do not have a noticeable influence on the orientation. However the relative Young's moduli of indenter/specimen materials, the indenter width and the surface coefficient of friction are the most influencing factors. Analyses are performed through the extended finite element method (X-FEM) and an orientation criterion for non-proportional loading proposed by the authors. Experimental fretting fatigue tests confirm the predicted trends. An explanation of this behaviour is also given. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support given by the Spanish Ministry of Economy and Competitiveness and the FEDER program through the projects DPI2017-89197-C2-1-R and DPI2017-89197-C2-2-R. The support of the Generalitat Valenciana, Programme PROMETEO 2016/007, is also acknowledged. The authors thank the collaboration of Mr. Francisco Gelardo Rodriguez es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation MINECO/DPI2017-89197-C2-1-R es_ES
dc.relation GENERALITAT VALENCIANA/PROMETEO/2016/007 es_ES
dc.relation info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ es_ES
dc.relation.ispartof Tribology International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fretting fatigue es_ES
dc.subject Complete contact es_ES
dc.subject Crack propagation es_ES
dc.subject Orientation criterion es_ES
dc.subject Extended finite element method es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.triboint.2018.10.048 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Marco, M.; Infante-Garcia, D.; Diaz-Alvarez, J.; Giner Maravilla, E. (2019). Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue. Tribology International. 131:343-352. https://doi.org/10.1016/j.triboint.2018.10.048 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.triboint.2018.10.048 es_ES
dc.description.upvformatpinicio 343 es_ES
dc.description.upvformatpfin 352 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 131 es_ES
dc.relation.pasarela S\377367 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hills, D. A., & Nowell, D. (1994). Mechanics of Fretting Fatique. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8281-0 es_ES
dc.description.references Giannakopoulos, Suresh, & Chenut. (2000). Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation. Fatigue <html_ent glyph=«@amp;» ascii=«&amp;»/> Fracture of Engineering Materials and Structures, 23(7), 561-571. doi:10.1046/j.1460-2695.2000.00306.x es_ES
dc.description.references CIAVARELLA, M. (2003). A ‘crack‐like’ notch analogue for a safe‐life fretting fatigue design methodology. Fatigue & Fracture of Engineering Materials & Structures, 26(12), 1159-1170. doi:10.1046/j.1460-2695.2003.00721.x es_ES
dc.description.references Giner, E., Sukumar, N., Denia, F. D., & Fuenmayor, F. J. (2008). Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures, 45(22-23), 5675-5687. doi:10.1016/j.ijsolstr.2008.06.009 es_ES
dc.description.references Giner, E., Tur, M., Vercher, A., & Fuenmayor, F. J. (2009). Numerical modelling of crack–contact interaction in 2D incomplete fretting contacts using X-FEM. Tribology International, 42(9), 1269-1275. doi:10.1016/j.triboint.2009.04.003 es_ES
dc.description.references Giner, E., Navarro, C., Sabsabi, M., Tur, M., Domínguez, J., & Fuenmayor, F. J. (2011). Fretting fatigue life prediction using the extended finite element method. International Journal of Mechanical Sciences, 53(3), 217-225. doi:10.1016/j.ijmecsci.2011.01.002 es_ES
dc.description.references Martínez, J. C., Vanegas Useche, L. V., & Wahab, M. A. (2017). Numerical prediction of fretting fatigue crack trajectory in a railway axle using XFEM. International Journal of Fatigue, 100, 32-49. doi:10.1016/j.ijfatigue.2017.03.009 es_ES
dc.description.references Pereira, K., & Abdel Wahab, M. (2017). Fretting fatigue crack propagation lifetime prediction in cylindrical contact using an extended MTS criterion for non-proportional loading. Tribology International, 115, 525-534. doi:10.1016/j.triboint.2017.06.026 es_ES
dc.description.references Sabsabi, M., Giner, E., & Fuenmayor, F. J. (2011). Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. International Journal of Fatigue, 33(6), 811-822. doi:10.1016/j.ijfatigue.2010.12.012 es_ES
dc.description.references Sunde, S. L., Berto, F., & Haugen, B. (2018). Predicting fretting fatigue in engineering design. International Journal of Fatigue, 117, 314-326. doi:10.1016/j.ijfatigue.2018.08.028 es_ES
dc.description.references NAVARRO, C., GARCIA, M., & DOMINGUEZ, J. (2003). A procedure for estimating the total life in fretting fatigue. Fatigue <html_ent glyph=«@amp;» ascii=«&amp;»/> Fracture of Engineering Materials and Structures, 26(5), 459-468. doi:10.1046/j.1460-2695.2003.00647.x es_ES
dc.description.references Pereira, K., Bhatti, N., & Abdel Wahab, M. (2018). Prediction of fretting fatigue crack initiation location and direction using cohesive zone model. Tribology International, 127, 245-254. doi:10.1016/j.triboint.2018.05.038 es_ES
dc.description.references Araújo, J. A., Almeida, G. M. J., Ferreira, J. L. A., da Silva, C. R. M., & Castro, F. C. (2017). Early cracking orientation under high stress gradients: The fretting case. International Journal of Fatigue, 100, 611-618. doi:10.1016/j.ijfatigue.2016.12.013 es_ES
dc.description.references Giner, E., Sabsabi, M., Ródenas, J. J., & Javier Fuenmayor, F. (2014). Direction of crack propagation in a complete contact fretting-fatigue problem. International Journal of Fatigue, 58, 172-180. doi:10.1016/j.ijfatigue.2013.03.001 es_ES
dc.description.references Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j es_ES
dc.description.references Giner, E., Sukumar, N., Tarancón, J. E., & Fuenmayor, F. J. (2009). An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics, 76(3), 347-368. doi:10.1016/j.engfracmech.2008.10.015 es_ES
dc.description.references Hattori, T., Nakamura, M., & Watanabe, T. (2003). Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribology International, 36(2), 87-97. doi:10.1016/s0301-679x(02)00141-x es_ES
dc.description.references Erdogan, F., & Sih, G. C. (1963). On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering, 85(4), 519-525. doi:10.1115/1.3656897 es_ES
dc.description.references Fadag, H. A., Mall, S., & Jain, V. K. (2008). A finite element analysis of fretting fatigue crack growth behavior in Ti–6Al–4V. Engineering Fracture Mechanics, 75(6), 1384-1399. doi:10.1016/j.engfracmech.2007.07.003 es_ES
dc.description.references Gol’dstein, R. V., & Salganik, R. L. (1974). Brittle fracture of solids with arbitrary cracks. International Journal of Fracture, 10(4), 507-523. doi:10.1007/bf00155254 es_ES
dc.description.references Cotterell, B., & Rice, J. R. (1980). Slightly curved or kinked cracks. International Journal of Fracture, 16(2), 155-169. doi:10.1007/bf00012619 es_ES
dc.description.references Nuismer, R. J. (1975). An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2), 245-250. doi:10.1007/bf00038891 es_ES
dc.description.references Giner, E., Sabsabi, M., & Fuenmayor, F. J. (2011). Calculation of KII in crack face contacts using X-FEM. Application to fretting fatigue. Engineering Fracture Mechanics, 78(2), 428-445. doi:10.1016/j.engfracmech.2010.11.002 es_ES
dc.description.references Ribeaucourt, R., Baietto-Dubourg, M.-C., & Gravouil, A. (2007). A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Computer Methods in Applied Mechanics and Engineering, 196(33-34), 3230-3247. doi:10.1016/j.cma.2007.03.004 es_ES
dc.description.references McDiarmid, D. L. (1994). A SHEAR STRESS BASED CRITICAL-PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION. Fatigue & Fracture of Engineering Materials and Structures, 17(12), 1475-1484. doi:10.1111/j.1460-2695.1994.tb00789.x es_ES
dc.description.references Fatemi, A., & Socie, D. F. (1988). A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING. Fatigue & Fracture of Engineering Materials and Structures, 11(3), 149-165. doi:10.1111/j.1460-2695.1988.tb01169.x es_ES
dc.description.references Giner, E., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2009). Crack face contact in X-FEM using a segment-to-segment approach. International Journal for Numerical Methods in Engineering, 82(11), 1424-1449. doi:10.1002/nme.2813 es_ES


This item appears in the following Collection(s)

Show simple item record