Mostrar el registro sencillo del ítem
dc.contributor.author | Marco, Miguel | es_ES |
dc.contributor.author | Infante-Garcia, Diego | es_ES |
dc.contributor.author | Diaz-Alvarez, Jose | es_ES |
dc.contributor.author | Giner Maravilla, Eugenio | es_ES |
dc.date.accessioned | 2021-01-26T04:31:50Z | |
dc.date.available | 2021-01-26T04:31:50Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 0301-679X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159835 | |
dc.description.abstract | [EN] In fatigue problems, an accurate estimation of the propagation direction is important for life prediction. We identify the most relevant factors that affect the crack orientation during the propagation stage of fretting fatigue cracks, arising from complete contacts. Contrary to what initially expected, parameters such as normal load, cyclic bulk load, etc. do not have a noticeable influence on the orientation. However the relative Young's moduli of indenter/specimen materials, the indenter width and the surface coefficient of friction are the most influencing factors. Analyses are performed through the extended finite element method (X-FEM) and an orientation criterion for non-proportional loading proposed by the authors. Experimental fretting fatigue tests confirm the predicted trends. An explanation of this behaviour is also given. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support given by the Spanish Ministry of Economy and Competitiveness and the FEDER program through the projects DPI2017-89197-C2-1-R and DPI2017-89197-C2-2-R. The support of the Generalitat Valenciana, Programme PROMETEO 2016/007, is also acknowledged. The authors thank the collaboration of Mr. Francisco Gelardo Rodriguez | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Tribology International | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fretting fatigue | es_ES |
dc.subject | Complete contact | es_ES |
dc.subject | Crack propagation | es_ES |
dc.subject | Orientation criterion | es_ES |
dc.subject | Extended finite element method | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.triboint.2018.10.048 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-1-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Marco, M.; Infante-Garcia, D.; Diaz-Alvarez, J.; Giner Maravilla, E. (2019). Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue. Tribology International. 131:343-352. https://doi.org/10.1016/j.triboint.2018.10.048 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.triboint.2018.10.048 | es_ES |
dc.description.upvformatpinicio | 343 | es_ES |
dc.description.upvformatpfin | 352 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 131 | es_ES |
dc.relation.pasarela | S\377367 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Hills, D. A., & Nowell, D. (1994). Mechanics of Fretting Fatique. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8281-0 | es_ES |
dc.description.references | Giannakopoulos, Suresh, & Chenut. (2000). Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation. Fatigue <html_ent glyph=«@amp;» ascii=«&»/> Fracture of Engineering Materials and Structures, 23(7), 561-571. doi:10.1046/j.1460-2695.2000.00306.x | es_ES |
dc.description.references | CIAVARELLA, M. (2003). A ‘crack‐like’ notch analogue for a safe‐life fretting fatigue design methodology. Fatigue & Fracture of Engineering Materials & Structures, 26(12), 1159-1170. doi:10.1046/j.1460-2695.2003.00721.x | es_ES |
dc.description.references | Giner, E., Sukumar, N., Denia, F. D., & Fuenmayor, F. J. (2008). Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures, 45(22-23), 5675-5687. doi:10.1016/j.ijsolstr.2008.06.009 | es_ES |
dc.description.references | Giner, E., Tur, M., Vercher, A., & Fuenmayor, F. J. (2009). Numerical modelling of crack–contact interaction in 2D incomplete fretting contacts using X-FEM. Tribology International, 42(9), 1269-1275. doi:10.1016/j.triboint.2009.04.003 | es_ES |
dc.description.references | Giner, E., Navarro, C., Sabsabi, M., Tur, M., Domínguez, J., & Fuenmayor, F. J. (2011). Fretting fatigue life prediction using the extended finite element method. International Journal of Mechanical Sciences, 53(3), 217-225. doi:10.1016/j.ijmecsci.2011.01.002 | es_ES |
dc.description.references | Martínez, J. C., Vanegas Useche, L. V., & Wahab, M. A. (2017). Numerical prediction of fretting fatigue crack trajectory in a railway axle using XFEM. International Journal of Fatigue, 100, 32-49. doi:10.1016/j.ijfatigue.2017.03.009 | es_ES |
dc.description.references | Pereira, K., & Abdel Wahab, M. (2017). Fretting fatigue crack propagation lifetime prediction in cylindrical contact using an extended MTS criterion for non-proportional loading. Tribology International, 115, 525-534. doi:10.1016/j.triboint.2017.06.026 | es_ES |
dc.description.references | Sabsabi, M., Giner, E., & Fuenmayor, F. J. (2011). Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. International Journal of Fatigue, 33(6), 811-822. doi:10.1016/j.ijfatigue.2010.12.012 | es_ES |
dc.description.references | Sunde, S. L., Berto, F., & Haugen, B. (2018). Predicting fretting fatigue in engineering design. International Journal of Fatigue, 117, 314-326. doi:10.1016/j.ijfatigue.2018.08.028 | es_ES |
dc.description.references | NAVARRO, C., GARCIA, M., & DOMINGUEZ, J. (2003). A procedure for estimating the total life in fretting fatigue. Fatigue <html_ent glyph=«@amp;» ascii=«&»/> Fracture of Engineering Materials and Structures, 26(5), 459-468. doi:10.1046/j.1460-2695.2003.00647.x | es_ES |
dc.description.references | Pereira, K., Bhatti, N., & Abdel Wahab, M. (2018). Prediction of fretting fatigue crack initiation location and direction using cohesive zone model. Tribology International, 127, 245-254. doi:10.1016/j.triboint.2018.05.038 | es_ES |
dc.description.references | Araújo, J. A., Almeida, G. M. J., Ferreira, J. L. A., da Silva, C. R. M., & Castro, F. C. (2017). Early cracking orientation under high stress gradients: The fretting case. International Journal of Fatigue, 100, 611-618. doi:10.1016/j.ijfatigue.2016.12.013 | es_ES |
dc.description.references | Giner, E., Sabsabi, M., Ródenas, J. J., & Javier Fuenmayor, F. (2014). Direction of crack propagation in a complete contact fretting-fatigue problem. International Journal of Fatigue, 58, 172-180. doi:10.1016/j.ijfatigue.2013.03.001 | es_ES |
dc.description.references | Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j | es_ES |
dc.description.references | Giner, E., Sukumar, N., Tarancón, J. E., & Fuenmayor, F. J. (2009). An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics, 76(3), 347-368. doi:10.1016/j.engfracmech.2008.10.015 | es_ES |
dc.description.references | Hattori, T., Nakamura, M., & Watanabe, T. (2003). Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribology International, 36(2), 87-97. doi:10.1016/s0301-679x(02)00141-x | es_ES |
dc.description.references | Erdogan, F., & Sih, G. C. (1963). On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering, 85(4), 519-525. doi:10.1115/1.3656897 | es_ES |
dc.description.references | Fadag, H. A., Mall, S., & Jain, V. K. (2008). A finite element analysis of fretting fatigue crack growth behavior in Ti–6Al–4V. Engineering Fracture Mechanics, 75(6), 1384-1399. doi:10.1016/j.engfracmech.2007.07.003 | es_ES |
dc.description.references | Gol’dstein, R. V., & Salganik, R. L. (1974). Brittle fracture of solids with arbitrary cracks. International Journal of Fracture, 10(4), 507-523. doi:10.1007/bf00155254 | es_ES |
dc.description.references | Cotterell, B., & Rice, J. R. (1980). Slightly curved or kinked cracks. International Journal of Fracture, 16(2), 155-169. doi:10.1007/bf00012619 | es_ES |
dc.description.references | Nuismer, R. J. (1975). An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2), 245-250. doi:10.1007/bf00038891 | es_ES |
dc.description.references | Giner, E., Sabsabi, M., & Fuenmayor, F. J. (2011). Calculation of KII in crack face contacts using X-FEM. Application to fretting fatigue. Engineering Fracture Mechanics, 78(2), 428-445. doi:10.1016/j.engfracmech.2010.11.002 | es_ES |
dc.description.references | Ribeaucourt, R., Baietto-Dubourg, M.-C., & Gravouil, A. (2007). A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Computer Methods in Applied Mechanics and Engineering, 196(33-34), 3230-3247. doi:10.1016/j.cma.2007.03.004 | es_ES |
dc.description.references | McDiarmid, D. L. (1994). A SHEAR STRESS BASED CRITICAL-PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION. Fatigue & Fracture of Engineering Materials and Structures, 17(12), 1475-1484. doi:10.1111/j.1460-2695.1994.tb00789.x | es_ES |
dc.description.references | Fatemi, A., & Socie, D. F. (1988). A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING. Fatigue & Fracture of Engineering Materials and Structures, 11(3), 149-165. doi:10.1111/j.1460-2695.1988.tb01169.x | es_ES |
dc.description.references | Giner, E., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2009). Crack face contact in X-FEM using a segment-to-segment approach. International Journal for Numerical Methods in Engineering, 82(11), 1424-1449. doi:10.1002/nme.2813 | es_ES |