- -

Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue

Mostrar el registro completo del ítem

Marco, M.; Infante-Garcia, D.; Diaz-Alvarez, J.; Giner Maravilla, E. (2019). Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue. Tribology International. 131:343-352. https://doi.org/10.1016/j.triboint.2018.10.048

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159835

Ficheros en el ítem

Metadatos del ítem

Título: Relevant factors affecting the direction of crack propagation in complete contact problems under fretting fatigue
Autor: Marco, Miguel Infante-Garcia, Diego Diaz-Alvarez, Jose Giner Maravilla, Eugenio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] In fatigue problems, an accurate estimation of the propagation direction is important for life prediction. We identify the most relevant factors that affect the crack orientation during the propagation stage of fretting ...[+]
Palabras clave: Fretting fatigue , Complete contact , Crack propagation , Orientation criterion , Extended finite element method
Derechos de uso: Reserva de todos los derechos
Fuente:
Tribology International. (issn: 0301-679X )
DOI: 10.1016/j.triboint.2018.10.048
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.triboint.2018.10.048
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-1-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89197-C2-2-R/ES/TALADRADO DE COMPONENTES HIBRIDOS CFRPS%2FTI Y TOLERANCIA AL DAÑO DEBIDO A MECANIZADO DURANTE EL COMPORTAMIENTO EN SERVICIO DE UNIONES ESTRUCTURALES AERONAUTICAS/
Agradecimientos:
The authors gratefully acknowledge the financial support given by the Spanish Ministry of Economy and Competitiveness and the FEDER program through the projects DPI2017-89197-C2-1-R and DPI2017-89197-C2-2-R. The support ...[+]
Tipo: Artículo

References

Hills, D. A., & Nowell, D. (1994). Mechanics of Fretting Fatique. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8281-0

Giannakopoulos, Suresh, & Chenut. (2000). Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation. Fatigue <html_ent glyph=«@amp;» ascii=«&amp;»/> Fracture of Engineering Materials and Structures, 23(7), 561-571. doi:10.1046/j.1460-2695.2000.00306.x

CIAVARELLA, M. (2003). A ‘crack‐like’ notch analogue for a safe‐life fretting fatigue design methodology. Fatigue & Fracture of Engineering Materials & Structures, 26(12), 1159-1170. doi:10.1046/j.1460-2695.2003.00721.x [+]
Hills, D. A., & Nowell, D. (1994). Mechanics of Fretting Fatique. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8281-0

Giannakopoulos, Suresh, & Chenut. (2000). Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation. Fatigue <html_ent glyph=«@amp;» ascii=«&amp;»/> Fracture of Engineering Materials and Structures, 23(7), 561-571. doi:10.1046/j.1460-2695.2000.00306.x

CIAVARELLA, M. (2003). A ‘crack‐like’ notch analogue for a safe‐life fretting fatigue design methodology. Fatigue & Fracture of Engineering Materials & Structures, 26(12), 1159-1170. doi:10.1046/j.1460-2695.2003.00721.x

Giner, E., Sukumar, N., Denia, F. D., & Fuenmayor, F. J. (2008). Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures, 45(22-23), 5675-5687. doi:10.1016/j.ijsolstr.2008.06.009

Giner, E., Tur, M., Vercher, A., & Fuenmayor, F. J. (2009). Numerical modelling of crack–contact interaction in 2D incomplete fretting contacts using X-FEM. Tribology International, 42(9), 1269-1275. doi:10.1016/j.triboint.2009.04.003

Giner, E., Navarro, C., Sabsabi, M., Tur, M., Domínguez, J., & Fuenmayor, F. J. (2011). Fretting fatigue life prediction using the extended finite element method. International Journal of Mechanical Sciences, 53(3), 217-225. doi:10.1016/j.ijmecsci.2011.01.002

Martínez, J. C., Vanegas Useche, L. V., & Wahab, M. A. (2017). Numerical prediction of fretting fatigue crack trajectory in a railway axle using XFEM. International Journal of Fatigue, 100, 32-49. doi:10.1016/j.ijfatigue.2017.03.009

Pereira, K., & Abdel Wahab, M. (2017). Fretting fatigue crack propagation lifetime prediction in cylindrical contact using an extended MTS criterion for non-proportional loading. Tribology International, 115, 525-534. doi:10.1016/j.triboint.2017.06.026

Sabsabi, M., Giner, E., & Fuenmayor, F. J. (2011). Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. International Journal of Fatigue, 33(6), 811-822. doi:10.1016/j.ijfatigue.2010.12.012

Sunde, S. L., Berto, F., & Haugen, B. (2018). Predicting fretting fatigue in engineering design. International Journal of Fatigue, 117, 314-326. doi:10.1016/j.ijfatigue.2018.08.028

NAVARRO, C., GARCIA, M., & DOMINGUEZ, J. (2003). A procedure for estimating the total life in fretting fatigue. Fatigue <html_ent glyph=«@amp;» ascii=«&amp;»/> Fracture of Engineering Materials and Structures, 26(5), 459-468. doi:10.1046/j.1460-2695.2003.00647.x

Pereira, K., Bhatti, N., & Abdel Wahab, M. (2018). Prediction of fretting fatigue crack initiation location and direction using cohesive zone model. Tribology International, 127, 245-254. doi:10.1016/j.triboint.2018.05.038

Araújo, J. A., Almeida, G. M. J., Ferreira, J. L. A., da Silva, C. R. M., & Castro, F. C. (2017). Early cracking orientation under high stress gradients: The fretting case. International Journal of Fatigue, 100, 611-618. doi:10.1016/j.ijfatigue.2016.12.013

Giner, E., Sabsabi, M., Ródenas, J. J., & Javier Fuenmayor, F. (2014). Direction of crack propagation in a complete contact fretting-fatigue problem. International Journal of Fatigue, 58, 172-180. doi:10.1016/j.ijfatigue.2013.03.001

Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Giner, E., Sukumar, N., Tarancón, J. E., & Fuenmayor, F. J. (2009). An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics, 76(3), 347-368. doi:10.1016/j.engfracmech.2008.10.015

Hattori, T., Nakamura, M., & Watanabe, T. (2003). Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribology International, 36(2), 87-97. doi:10.1016/s0301-679x(02)00141-x

Erdogan, F., & Sih, G. C. (1963). On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering, 85(4), 519-525. doi:10.1115/1.3656897

Fadag, H. A., Mall, S., & Jain, V. K. (2008). A finite element analysis of fretting fatigue crack growth behavior in Ti–6Al–4V. Engineering Fracture Mechanics, 75(6), 1384-1399. doi:10.1016/j.engfracmech.2007.07.003

Gol’dstein, R. V., & Salganik, R. L. (1974). Brittle fracture of solids with arbitrary cracks. International Journal of Fracture, 10(4), 507-523. doi:10.1007/bf00155254

Cotterell, B., & Rice, J. R. (1980). Slightly curved or kinked cracks. International Journal of Fracture, 16(2), 155-169. doi:10.1007/bf00012619

Nuismer, R. J. (1975). An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2), 245-250. doi:10.1007/bf00038891

Giner, E., Sabsabi, M., & Fuenmayor, F. J. (2011). Calculation of KII in crack face contacts using X-FEM. Application to fretting fatigue. Engineering Fracture Mechanics, 78(2), 428-445. doi:10.1016/j.engfracmech.2010.11.002

Ribeaucourt, R., Baietto-Dubourg, M.-C., & Gravouil, A. (2007). A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Computer Methods in Applied Mechanics and Engineering, 196(33-34), 3230-3247. doi:10.1016/j.cma.2007.03.004

McDiarmid, D. L. (1994). A SHEAR STRESS BASED CRITICAL-PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION. Fatigue & Fracture of Engineering Materials and Structures, 17(12), 1475-1484. doi:10.1111/j.1460-2695.1994.tb00789.x

Fatemi, A., & Socie, D. F. (1988). A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING. Fatigue & Fracture of Engineering Materials and Structures, 11(3), 149-165. doi:10.1111/j.1460-2695.1988.tb01169.x

Giner, E., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2009). Crack face contact in X-FEM using a segment-to-segment approach. International Journal for Numerical Methods in Engineering, 82(11), 1424-1449. doi:10.1002/nme.2813

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem