Mostrar el registro sencillo del ítem
dc.contributor.author | Zafar, Fiza | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2021-01-26T04:32:00Z | |
dc.date.available | 2021-01-26T04:32:00Z | |
dc.date.issued | 2019-07 | es_ES |
dc.identifier.issn | 1017-1398 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159838 | |
dc.description.abstract | [EN] Complex dynamics tools applied on the rational functions resulting from a parametric family of roots solvers for nonlinear equations provide very useful results that have been stated in the last years. These qualitative properties allow the user to select the most efficient members from the family of iterative schemes, in terms of stability and wideness of the sets of convergent initial guesses. These tools have been widely used in the case of iterative procedures for finding simple roots and only recently are being applied on the case of multiplicity m >1. In this paper, by using weight function procedure, we design a general class of iterative methods for calculating multiple roots that includes some known methods. In this class, conditions on the weight function are not very restrictive, so a large number of different subfamilies can be generated, all of them are optimal with fourth-order of convergence. Their dynamical analysis gives us enough information to select those with better properties and test them on different numerical experiments, showing their numerical properties. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Numerical Algorithms | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Multiple zeros | es_ES |
dc.subject | Optimal methods | es_ES |
dc.subject | Weight functions | es_ES |
dc.subject | Complex dynamics | es_ES |
dc.subject | Parameter and dynamical planes | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Stability analysis of a family of optimal fourth-order methods for multiple roots | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11075-018-0577-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2019). Stability analysis of a family of optimal fourth-order methods for multiple roots. Numerical Algorithms. 81(3):947-981. https://doi.org/10.1007/s11075-018-0577-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11075-018-0577-0 | es_ES |
dc.description.upvformatpinicio | 947 | es_ES |
dc.description.upvformatpfin | 981 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 81 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\393522 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Schlumberger Foundation | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with MATLAB Applications. Prentice Hall PTR, New Jersey (1999) | es_ES |
dc.description.references | Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. Numer. Method Eng. 23, 1455–1481 (1986) | es_ES |
dc.description.references | Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. Math. Chem. 53, 880–892 (2015) | es_ES |
dc.description.references | Anza, S., Vicente, C., Gimeno, B., Boria, V.E., Armendá riz, J.: Long-term multipactor discharge in multicarrier systems. Phys Plasmas 14(8), 082–112 (2007) | es_ES |
dc.description.references | Neta, B., Johnson, A.N.: High order nonlinear solver for multiple roots. Comp. Math. Appl. 55(9), 2012–2017 (2008) | es_ES |
dc.description.references | Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009) | es_ES |
dc.description.references | Neta, B.: Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 87(5), 1023–1031 (2010) | es_ES |
dc.description.references | Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010) | es_ES |
dc.description.references | Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010) | es_ES |
dc.description.references | Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. Comput. Math. Appl. 235, 4199–4206 (2011) | es_ES |
dc.description.references | Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012) | es_ES |
dc.description.references | Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique for finding multiple zeros and its dynamic. Egypt. Math. Soc. 21, 346–353 (2013) | es_ES |
dc.description.references | Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013) | es_ES |
dc.description.references | Liu, B., Zhou, X.: A new family of fourth-order methods for multiple roots of nonlinear equations. Non. Anal. Model. Cont. 18(2), 143–152 (2013) | es_ES |
dc.description.references | Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013) | es_ES |
dc.description.references | Thukral, R.: A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. Numer. Math. Stoch. 6(1), 37–44 (2014) | es_ES |
dc.description.references | Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015) | es_ES |
dc.description.references | Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71(4), 775–796 (2016) | es_ES |
dc.description.references | Lee, M.Y., Kim, Y.I., Magreñán, Á.A.: On the dynamics of tri-parametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-function ratio. Appl. Math. Comput. 315, 564–590 (2017) | es_ES |
dc.description.references | Kim, Y.I., Geum, Y.-H.: A triparametric family of optimal fourth-order multiple-root finders and their Dynamics, Discrete Dynamics in Nature and Society 2016. Article ID 8436759 23 pp. (2016) | es_ES |
dc.description.references | Kim, Y.I., Geum, Y.-H.: A two-parametric family of fourth-order iterative methods with optimal convergence for multiple zeros, J. Appl. Math. 2013. Article ID 369067 7 pp. (2013) | es_ES |
dc.description.references | Kim, Y.I., Geum, Y.-H.: A new biparametric family of two-point optimal fourth-order multiple-root finders, J. Appl. Math. 2014. Article ID 737305 7 pp. (2014) | es_ES |
dc.description.references | Amat, S., Argyros, I.K., Busquier, S., Magreñán, Á.A.: Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions. Numer. Algor. https://doi.org/10.1007/s11075-016-0152-5 (2017) | es_ES |
dc.description.references | Cordero, A., García-maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013) | es_ES |
dc.description.references | Geum, Y.H., Kim, Y.I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016) | es_ES |
dc.description.references | Amiri, A., Cordero, A., Darvishi, M.T., Torregrosa, J.R.: Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018) | es_ES |
dc.description.references | Blanchard, P.: The dinamics of Newton’s method. Proc. Symp. Appl. math. 49, 139–154 (1994) | es_ES |
dc.description.references | Beardon, A.F.: Iteration of rational functions: Complex and Analytic Dynamical Systems, Graduate Texts in Mathematics, vol. 132. Springer-Verlag, New York (1991) | es_ES |
dc.description.references | Devaney, R.L.: An introduction to chaotic dynamical systems. Addison-Wesley Publishing Company, Boston (1989) | es_ES |
dc.description.references | Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984) | es_ES |
dc.description.references | Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods, Sci. World 2013. Article ID 780153, 11 pp. (2013) | es_ES |
dc.description.references | Jay, L.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) | es_ES |