- -

Stability analysis of a family of optimal fourth-order methods for multiple roots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stability analysis of a family of optimal fourth-order methods for multiple roots

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zafar, Fiza es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-01-26T04:32:00Z
dc.date.available 2021-01-26T04:32:00Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 1017-1398 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159838
dc.description.abstract [EN] Complex dynamics tools applied on the rational functions resulting from a parametric family of roots solvers for nonlinear equations provide very useful results that have been stated in the last years. These qualitative properties allow the user to select the most efficient members from the family of iterative schemes, in terms of stability and wideness of the sets of convergent initial guesses. These tools have been widely used in the case of iterative procedures for finding simple roots and only recently are being applied on the case of multiplicity m >1. In this paper, by using weight function procedure, we design a general class of iterative methods for calculating multiple roots that includes some known methods. In this class, conditions on the weight function are not very restrictive, so a large number of different subfamilies can be generated, all of them are optimal with fourth-order of convergence. Their dynamical analysis gives us enough information to select those with better properties and test them on different numerical experiments, showing their numerical properties. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Multiple zeros es_ES
dc.subject Optimal methods es_ES
dc.subject Weight functions es_ES
dc.subject Complex dynamics es_ES
dc.subject Parameter and dynamical planes es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Stability analysis of a family of optimal fourth-order methods for multiple roots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-018-0577-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2019). Stability analysis of a family of optimal fourth-order methods for multiple roots. Numerical Algorithms. 81(3):947-981. https://doi.org/10.1007/s11075-018-0577-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11075-018-0577-0 es_ES
dc.description.upvformatpinicio 947 es_ES
dc.description.upvformatpfin 981 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\393522 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Schlumberger Foundation es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with MATLAB Applications. Prentice Hall PTR, New Jersey (1999) es_ES
dc.description.references Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. Numer. Method Eng. 23, 1455–1481 (1986) es_ES
dc.description.references Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. Math. Chem. 53, 880–892 (2015) es_ES
dc.description.references Anza, S., Vicente, C., Gimeno, B., Boria, V.E., Armendá riz, J.: Long-term multipactor discharge in multicarrier systems. Phys Plasmas 14(8), 082–112 (2007) es_ES
dc.description.references Neta, B., Johnson, A.N.: High order nonlinear solver for multiple roots. Comp. Math. Appl. 55(9), 2012–2017 (2008) es_ES
dc.description.references Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009) es_ES
dc.description.references Neta, B.: Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 87(5), 1023–1031 (2010) es_ES
dc.description.references Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010) es_ES
dc.description.references Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010) es_ES
dc.description.references Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. Comput. Math. Appl. 235, 4199–4206 (2011) es_ES
dc.description.references Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012) es_ES
dc.description.references Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique for finding multiple zeros and its dynamic. Egypt. Math. Soc. 21, 346–353 (2013) es_ES
dc.description.references Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013) es_ES
dc.description.references Liu, B., Zhou, X.: A new family of fourth-order methods for multiple roots of nonlinear equations. Non. Anal. Model. Cont. 18(2), 143–152 (2013) es_ES
dc.description.references Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013) es_ES
dc.description.references Thukral, R.: A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. Numer. Math. Stoch. 6(1), 37–44 (2014) es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015) es_ES
dc.description.references Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71(4), 775–796 (2016) es_ES
dc.description.references Lee, M.Y., Kim, Y.I., Magreñán, Á.A.: On the dynamics of tri-parametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-function ratio. Appl. Math. Comput. 315, 564–590 (2017) es_ES
dc.description.references Kim, Y.I., Geum, Y.-H.: A triparametric family of optimal fourth-order multiple-root finders and their Dynamics, Discrete Dynamics in Nature and Society 2016. Article ID 8436759 23 pp. (2016) es_ES
dc.description.references Kim, Y.I., Geum, Y.-H.: A two-parametric family of fourth-order iterative methods with optimal convergence for multiple zeros, J. Appl. Math. 2013. Article ID 369067 7 pp. (2013) es_ES
dc.description.references Kim, Y.I., Geum, Y.-H.: A new biparametric family of two-point optimal fourth-order multiple-root finders, J. Appl. Math. 2014. Article ID 737305 7 pp. (2014) es_ES
dc.description.references Amat, S., Argyros, I.K., Busquier, S., Magreñán, Á.A.: Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions. Numer. Algor. https://doi.org/10.1007/s11075-016-0152-5 (2017) es_ES
dc.description.references Cordero, A., García-maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013) es_ES
dc.description.references Geum, Y.H., Kim, Y.I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016) es_ES
dc.description.references Amiri, A., Cordero, A., Darvishi, M.T., Torregrosa, J.R.: Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018) es_ES
dc.description.references Blanchard, P.: The dinamics of Newton’s method. Proc. Symp. Appl. math. 49, 139–154 (1994) es_ES
dc.description.references Beardon, A.F.: Iteration of rational functions: Complex and Analytic Dynamical Systems, Graduate Texts in Mathematics, vol. 132. Springer-Verlag, New York (1991) es_ES
dc.description.references Devaney, R.L.: An introduction to chaotic dynamical systems. Addison-Wesley Publishing Company, Boston (1989) es_ES
dc.description.references Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984) es_ES
dc.description.references Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods, Sci. World 2013. Article ID 780153, 11 pp. (2013) es_ES
dc.description.references Jay, L.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem