- -

Stability analysis of a family of optimal fourth-order methods for multiple roots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stability analysis of a family of optimal fourth-order methods for multiple roots

Mostrar el registro completo del ítem

Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2019). Stability analysis of a family of optimal fourth-order methods for multiple roots. Numerical Algorithms. 81(3):947-981. https://doi.org/10.1007/s11075-018-0577-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159838

Ficheros en el ítem

Metadatos del ítem

Título: Stability analysis of a family of optimal fourth-order methods for multiple roots
Autor: Zafar, Fiza Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Complex dynamics tools applied on the rational functions resulting from a parametric family of roots solvers for nonlinear equations provide very useful results that have been stated in the last years. These qualitative ...[+]
Palabras clave: Nonlinear equations , Multiple zeros , Optimal methods , Weight functions , Complex dynamics , Parameter and dynamical planes
Derechos de uso: Reserva de todos los derechos
Fuente:
Numerical Algorithms. (issn: 1017-1398 )
DOI: 10.1007/s11075-018-0577-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11075-018-0577-0
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.
Tipo: Artículo

References

Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with MATLAB Applications. Prentice Hall PTR, New Jersey (1999)

Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. Numer. Method Eng. 23, 1455–1481 (1986)

Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. Math. Chem. 53, 880–892 (2015) [+]
Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with MATLAB Applications. Prentice Hall PTR, New Jersey (1999)

Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. Numer. Method Eng. 23, 1455–1481 (1986)

Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. Math. Chem. 53, 880–892 (2015)

Anza, S., Vicente, C., Gimeno, B., Boria, V.E., Armendá riz, J.: Long-term multipactor discharge in multicarrier systems. Phys Plasmas 14(8), 082–112 (2007)

Neta, B., Johnson, A.N.: High order nonlinear solver for multiple roots. Comp. Math. Appl. 55(9), 2012–2017 (2008)

Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)

Neta, B.: Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 87(5), 1023–1031 (2010)

Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)

Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)

Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. Comput. Math. Appl. 235, 4199–4206 (2011)

Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)

Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique for finding multiple zeros and its dynamic. Egypt. Math. Soc. 21, 346–353 (2013)

Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)

Liu, B., Zhou, X.: A new family of fourth-order methods for multiple roots of nonlinear equations. Non. Anal. Model. Cont. 18(2), 143–152 (2013)

Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013)

Thukral, R.: A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. Numer. Math. Stoch. 6(1), 37–44 (2014)

Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015)

Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71(4), 775–796 (2016)

Lee, M.Y., Kim, Y.I., Magreñán, Á.A.: On the dynamics of tri-parametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-function ratio. Appl. Math. Comput. 315, 564–590 (2017)

Kim, Y.I., Geum, Y.-H.: A triparametric family of optimal fourth-order multiple-root finders and their Dynamics, Discrete Dynamics in Nature and Society 2016. Article ID 8436759 23 pp. (2016)

Kim, Y.I., Geum, Y.-H.: A two-parametric family of fourth-order iterative methods with optimal convergence for multiple zeros, J. Appl. Math. 2013. Article ID 369067 7 pp. (2013)

Kim, Y.I., Geum, Y.-H.: A new biparametric family of two-point optimal fourth-order multiple-root finders, J. Appl. Math. 2014. Article ID 737305 7 pp. (2014)

Amat, S., Argyros, I.K., Busquier, S., Magreñán, Á.A.: Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions. Numer. Algor. https://doi.org/10.1007/s11075-016-0152-5 (2017)

Cordero, A., García-maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

Geum, Y.H., Kim, Y.I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016)

Amiri, A., Cordero, A., Darvishi, M.T., Torregrosa, J.R.: Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Appl. Math. Comput. 323, 43–57 (2018)

Blanchard, P.: The dinamics of Newton’s method. Proc. Symp. Appl. math. 49, 139–154 (1994)

Beardon, A.F.: Iteration of rational functions: Complex and Analytic Dynamical Systems, Graduate Texts in Mathematics, vol. 132. Springer-Verlag, New York (1991)

Devaney, R.L.: An introduction to chaotic dynamical systems. Addison-Wesley Publishing Company, Boston (1989)

Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)

Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods, Sci. World 2013. Article ID 780153, 11 pp. (2013)

Jay, L.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem