- -

Multiclass Alpha Integration of Scores from Multiple Classifiers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiclass Alpha Integration of Scores from Multiple Classifiers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Safont Armero, Gonzalo es_ES
dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.date.accessioned 2021-01-26T04:32:10Z
dc.date.available 2021-01-26T04:32:10Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 0899-7667 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159843
dc.description.abstract [EN] Alpha integration methods have been used for integrating stochastic models and fusion in the context of detection (binary classification). Our work proposes separated score integration (SSI), a new method based on alpha integration to perform soft fusion of scores in multiclass classification problems, one of the most common problems in automatic classification. Theoretical derivation is presented to optimize the parameters of this method to achieve the least mean squared error (LMSE) or the mínimum probability of error (MPE). The proposed alpha integrationmethod was tested on several sets of simulated and real data. The first set of experiments used synthetic data to replicate a problem of automatic detection and classification of three types of ultrasonic pulses buried in noise (four-class classification). The second set of experiments analyzed two databases (one publicly available and one private) of real polysomnographic records from subjects with sleep disorders. These records were automatically staged in wake, rapid eye movement (REM) sleep, and non-REM sleep (three-class classification). Finally, the third set of experiments was performed on a publicly available database of single-channel real electroencephalographic data that included epileptic patients and healthy controls in five conditions (five-class classification). In all cases, alpha integration performed better than the considered single classifiers and classical fusion techniques. es_ES
dc.description.sponsorship This work was supported by the Spanish Administration and European Union under grant TEC2017-84743-P and Generalitat Valenciana under grant PROMETEO II/2014/032. es_ES
dc.language Inglés es_ES
dc.publisher MIT Press es_ES
dc.relation.ispartof Neural Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Soft fusion es_ES
dc.subject Alpha integration es_ES
dc.subject Classification es_ES
dc.subject EEG es_ES
dc.subject Ultrasounds es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multiclass Alpha Integration of Scores from Multiple Classifiers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1162/neco_a_01169 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F032/ES/TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L. (2019). Multiclass Alpha Integration of Scores from Multiple Classifiers. Neural Computation. 31(4):806-825. https://doi.org/10.1162/neco_a_01169 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1162/neco_a_01169 es_ES
dc.description.upvformatpinicio 806 es_ES
dc.description.upvformatpfin 825 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\408017 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. doi:10.1016/j.eswa.2013.12.003 es_ES
dc.description.references Amari, S. (2007). Integration of Stochastic Models by Minimizing α-Divergence. Neural Computation, 19(10), 2780-2796. doi:10.1162/neco.2007.19.10.2780 es_ES
dc.description.references Amari, S. (2016). Information Geometry and Its Applications. Applied Mathematical Sciences. doi:10.1007/978-4-431-55978-8 es_ES
dc.description.references Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907 es_ES
dc.description.references Choi, H., Choi, S., & Choe, Y. (2013). Parameter Learning for Alpha Integration. Neural Computation, 25(6), 1585-1604. doi:10.1162/neco_a_00445 es_ES
dc.description.references Eltoft, T. (2006). Modeling the amplitude statistics of ultrasonic images. IEEE Transactions on Medical Imaging, 25(2), 229-240. doi:10.1109/tmi.2005.862664 es_ES
dc.description.references Abdel Fattah, M. (2015). New term weighting schemes with combination of multiple classifiers for sentiment analysis. Neurocomputing, 167, 434-442. doi:10.1016/j.neucom.2015.04.051 es_ES
dc.description.references Hjorth, B. (1973). The physical significance of time domain descriptors in EEG analysis. Electroencephalography and Clinical Neurophysiology, 34(3), 321-325. doi:10.1016/0013-4694(73)90260-5 es_ES
dc.description.references Kevric, J., Jukic, S., & Subasi, A. (2016). An effective combining classifier approach using tree algorithms for network intrusion detection. Neural Computing and Applications, 28(S1), 1051-1058. doi:10.1007/s00521-016-2418-1 es_ES
dc.description.references Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28-44. doi:10.1016/j.inffus.2011.08.001 es_ES
dc.description.references Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226-239. doi:10.1109/34.667881 es_ES
dc.description.references Lahat, D., Adali, T., & Jutten, C. (2015). Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proceedings of the IEEE, 103(9), 1449-1477. doi:10.1109/jproc.2015.2460697 es_ES
dc.description.references Mohandes, M., Deriche, M., & Aliyu, S. O. (2018). Classifiers Combination Techniques: A Comprehensive Review. IEEE Access, 6, 19626-19639. doi:10.1109/access.2018.2813079 es_ES
dc.description.references Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C. M., & White, P. R. (2014). Signal processing techniques applied to human sleep EEG signals—A review. Biomedical Signal Processing and Control, 10, 21-33. doi:10.1016/j.bspc.2013.12.003 es_ES
dc.description.references Nunes, T. M., Coelho, A. L. V., Lima, C. A. M., Papa, J. P., & de Albuquerque, V. H. C. (2014). EEG signal classification for epilepsy diagnosis via optimum path forest – A systematic assessment. Neurocomputing, 136, 103-123. doi:10.1016/j.neucom.2014.01.020 es_ES
dc.description.references Poh, N., & Bengio, S. (2005). How do correlation and variance of base-experts affect fusion in biometric authentication tasks? IEEE Transactions on Signal Processing, 53(11), 4384-4396. doi:10.1109/tsp.2005.857006 es_ES
dc.description.references Rivet, B., Wang, W., Naqvi, S. M., & Chambers, J. A. (2014). Audiovisual Speech Source Separation: An overview of key methodologies. IEEE Signal Processing Magazine, 31(3), 125-134. doi:10.1109/msp.2013.2296173 es_ES
dc.description.references Salazar, A., & Vergara, L. (2010). ICA Mixtures Applied to Ultrasonic Nondestructive Classification of Archaeological Ceramics. EURASIP Journal on Advances in Signal Processing, 2010(1). doi:10.1155/2010/125201 es_ES
dc.description.references Soriano, A., Vergara, L., Ahmed, B., & Salazar, A. (2015). Fusion of Scores in a Detection Context Based on Alpha Integration. Neural Computation, 27(9), 1983-2010. doi:10.1162/neco_a_00766 es_ES
dc.description.references Vergara, L., Soriano, A., Safont, G., & Salazar, A. (2016). On the fusion of non-independent detectors. Digital Signal Processing, 50, 24-33. doi:10.1016/j.dsp.2015.11.009 es_ES
dc.description.references Wang, S., Hua, G., Hao, G., & Xie, C. (2017). A Cycle Deep Belief Network Model for Multivariate Time Series Classification. Mathematical Problems in Engineering, 2017, 1-7. doi:10.1155/2017/9549323 es_ES
dc.description.references Wu, D. (2009). Parameter Estimation for α-GMM Based on Maximum Likelihood Criterion. Neural Computation, 21(6), 1776-1795. doi:10.1162/neco.2008.04-08-776 es_ES
dc.description.references Xie, B., & Hlaing Minn. (2012). Real-Time Sleep Apnea Detection by Classifier Combination. IEEE Transactions on Information Technology in Biomedicine, 16(3), 469-477. doi:10.1109/titb.2012.2188299 es_ES
dc.description.references Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty Years of Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 1177-1193. doi:10.1109/tnnls.2012.2200299 es_ES
dc.description.references Zhang, J., Wu, Y., Bai, J., & Chen, F. (2015). Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Transactions of the Institute of Measurement and Control, 38(4), 435-451. doi:10.1177/0142331215587568 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem