Mostrar el registro sencillo del ítem
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.date.accessioned | 2021-01-26T04:32:10Z | |
dc.date.available | 2021-01-26T04:32:10Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 0899-7667 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159843 | |
dc.description.abstract | [EN] Alpha integration methods have been used for integrating stochastic models and fusion in the context of detection (binary classification). Our work proposes separated score integration (SSI), a new method based on alpha integration to perform soft fusion of scores in multiclass classification problems, one of the most common problems in automatic classification. Theoretical derivation is presented to optimize the parameters of this method to achieve the least mean squared error (LMSE) or the mínimum probability of error (MPE). The proposed alpha integrationmethod was tested on several sets of simulated and real data. The first set of experiments used synthetic data to replicate a problem of automatic detection and classification of three types of ultrasonic pulses buried in noise (four-class classification). The second set of experiments analyzed two databases (one publicly available and one private) of real polysomnographic records from subjects with sleep disorders. These records were automatically staged in wake, rapid eye movement (REM) sleep, and non-REM sleep (three-class classification). Finally, the third set of experiments was performed on a publicly available database of single-channel real electroencephalographic data that included epileptic patients and healthy controls in five conditions (five-class classification). In all cases, alpha integration performed better than the considered single classifiers and classical fusion techniques. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Administration and European Union under grant TEC2017-84743-P and Generalitat Valenciana under grant PROMETEO II/2014/032. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MIT Press | es_ES |
dc.relation.ispartof | Neural Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Soft fusion | es_ES |
dc.subject | Alpha integration | es_ES |
dc.subject | Classification | es_ES |
dc.subject | EEG | es_ES |
dc.subject | Ultrasounds | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Multiclass Alpha Integration of Scores from Multiple Classifiers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1162/neco_a_01169 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F032/ES/TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L. (2019). Multiclass Alpha Integration of Scores from Multiple Classifiers. Neural Computation. 31(4):806-825. https://doi.org/10.1162/neco_a_01169 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1162/neco_a_01169 | es_ES |
dc.description.upvformatpinicio | 806 | es_ES |
dc.description.upvformatpfin | 825 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\408017 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. doi:10.1016/j.eswa.2013.12.003 | es_ES |
dc.description.references | Amari, S. (2007). Integration of Stochastic Models by Minimizing α-Divergence. Neural Computation, 19(10), 2780-2796. doi:10.1162/neco.2007.19.10.2780 | es_ES |
dc.description.references | Amari, S. (2016). Information Geometry and Its Applications. Applied Mathematical Sciences. doi:10.1007/978-4-431-55978-8 | es_ES |
dc.description.references | Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907 | es_ES |
dc.description.references | Choi, H., Choi, S., & Choe, Y. (2013). Parameter Learning for Alpha Integration. Neural Computation, 25(6), 1585-1604. doi:10.1162/neco_a_00445 | es_ES |
dc.description.references | Eltoft, T. (2006). Modeling the amplitude statistics of ultrasonic images. IEEE Transactions on Medical Imaging, 25(2), 229-240. doi:10.1109/tmi.2005.862664 | es_ES |
dc.description.references | Abdel Fattah, M. (2015). New term weighting schemes with combination of multiple classifiers for sentiment analysis. Neurocomputing, 167, 434-442. doi:10.1016/j.neucom.2015.04.051 | es_ES |
dc.description.references | Hjorth, B. (1973). The physical significance of time domain descriptors in EEG analysis. Electroencephalography and Clinical Neurophysiology, 34(3), 321-325. doi:10.1016/0013-4694(73)90260-5 | es_ES |
dc.description.references | Kevric, J., Jukic, S., & Subasi, A. (2016). An effective combining classifier approach using tree algorithms for network intrusion detection. Neural Computing and Applications, 28(S1), 1051-1058. doi:10.1007/s00521-016-2418-1 | es_ES |
dc.description.references | Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28-44. doi:10.1016/j.inffus.2011.08.001 | es_ES |
dc.description.references | Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226-239. doi:10.1109/34.667881 | es_ES |
dc.description.references | Lahat, D., Adali, T., & Jutten, C. (2015). Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proceedings of the IEEE, 103(9), 1449-1477. doi:10.1109/jproc.2015.2460697 | es_ES |
dc.description.references | Mohandes, M., Deriche, M., & Aliyu, S. O. (2018). Classifiers Combination Techniques: A Comprehensive Review. IEEE Access, 6, 19626-19639. doi:10.1109/access.2018.2813079 | es_ES |
dc.description.references | Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C. M., & White, P. R. (2014). Signal processing techniques applied to human sleep EEG signals—A review. Biomedical Signal Processing and Control, 10, 21-33. doi:10.1016/j.bspc.2013.12.003 | es_ES |
dc.description.references | Nunes, T. M., Coelho, A. L. V., Lima, C. A. M., Papa, J. P., & de Albuquerque, V. H. C. (2014). EEG signal classification for epilepsy diagnosis via optimum path forest – A systematic assessment. Neurocomputing, 136, 103-123. doi:10.1016/j.neucom.2014.01.020 | es_ES |
dc.description.references | Poh, N., & Bengio, S. (2005). How do correlation and variance of base-experts affect fusion in biometric authentication tasks? IEEE Transactions on Signal Processing, 53(11), 4384-4396. doi:10.1109/tsp.2005.857006 | es_ES |
dc.description.references | Rivet, B., Wang, W., Naqvi, S. M., & Chambers, J. A. (2014). Audiovisual Speech Source Separation: An overview of key methodologies. IEEE Signal Processing Magazine, 31(3), 125-134. doi:10.1109/msp.2013.2296173 | es_ES |
dc.description.references | Salazar, A., & Vergara, L. (2010). ICA Mixtures Applied to Ultrasonic Nondestructive Classification of Archaeological Ceramics. EURASIP Journal on Advances in Signal Processing, 2010(1). doi:10.1155/2010/125201 | es_ES |
dc.description.references | Soriano, A., Vergara, L., Ahmed, B., & Salazar, A. (2015). Fusion of Scores in a Detection Context Based on Alpha Integration. Neural Computation, 27(9), 1983-2010. doi:10.1162/neco_a_00766 | es_ES |
dc.description.references | Vergara, L., Soriano, A., Safont, G., & Salazar, A. (2016). On the fusion of non-independent detectors. Digital Signal Processing, 50, 24-33. doi:10.1016/j.dsp.2015.11.009 | es_ES |
dc.description.references | Wang, S., Hua, G., Hao, G., & Xie, C. (2017). A Cycle Deep Belief Network Model for Multivariate Time Series Classification. Mathematical Problems in Engineering, 2017, 1-7. doi:10.1155/2017/9549323 | es_ES |
dc.description.references | Wu, D. (2009). Parameter Estimation for α-GMM Based on Maximum Likelihood Criterion. Neural Computation, 21(6), 1776-1795. doi:10.1162/neco.2008.04-08-776 | es_ES |
dc.description.references | Xie, B., & Hlaing Minn. (2012). Real-Time Sleep Apnea Detection by Classifier Combination. IEEE Transactions on Information Technology in Biomedicine, 16(3), 469-477. doi:10.1109/titb.2012.2188299 | es_ES |
dc.description.references | Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty Years of Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 1177-1193. doi:10.1109/tnnls.2012.2200299 | es_ES |
dc.description.references | Zhang, J., Wu, Y., Bai, J., & Chen, F. (2015). Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Transactions of the Institute of Measurement and Control, 38(4), 435-451. doi:10.1177/0142331215587568 | es_ES |