Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. doi:10.1016/j.eswa.2013.12.003
Amari, S. (2007). Integration of Stochastic Models by Minimizing α-Divergence. Neural Computation, 19(10), 2780-2796. doi:10.1162/neco.2007.19.10.2780
Amari, S. (2016). Information Geometry and Its Applications. Applied Mathematical Sciences. doi:10.1007/978-4-431-55978-8
[+]
Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. doi:10.1016/j.eswa.2013.12.003
Amari, S. (2007). Integration of Stochastic Models by Minimizing α-Divergence. Neural Computation, 19(10), 2780-2796. doi:10.1162/neco.2007.19.10.2780
Amari, S. (2016). Information Geometry and Its Applications. Applied Mathematical Sciences. doi:10.1007/978-4-431-55978-8
Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907
Choi, H., Choi, S., & Choe, Y. (2013). Parameter Learning for Alpha Integration. Neural Computation, 25(6), 1585-1604. doi:10.1162/neco_a_00445
Eltoft, T. (2006). Modeling the amplitude statistics of ultrasonic images. IEEE Transactions on Medical Imaging, 25(2), 229-240. doi:10.1109/tmi.2005.862664
Abdel Fattah, M. (2015). New term weighting schemes with combination of multiple classifiers for sentiment analysis. Neurocomputing, 167, 434-442. doi:10.1016/j.neucom.2015.04.051
Hjorth, B. (1973). The physical significance of time domain descriptors in EEG analysis. Electroencephalography and Clinical Neurophysiology, 34(3), 321-325. doi:10.1016/0013-4694(73)90260-5
Kevric, J., Jukic, S., & Subasi, A. (2016). An effective combining classifier approach using tree algorithms for network intrusion detection. Neural Computing and Applications, 28(S1), 1051-1058. doi:10.1007/s00521-016-2418-1
Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28-44. doi:10.1016/j.inffus.2011.08.001
Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226-239. doi:10.1109/34.667881
Lahat, D., Adali, T., & Jutten, C. (2015). Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proceedings of the IEEE, 103(9), 1449-1477. doi:10.1109/jproc.2015.2460697
Mohandes, M., Deriche, M., & Aliyu, S. O. (2018). Classifiers Combination Techniques: A Comprehensive Review. IEEE Access, 6, 19626-19639. doi:10.1109/access.2018.2813079
Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C. M., & White, P. R. (2014). Signal processing techniques applied to human sleep EEG signals—A review. Biomedical Signal Processing and Control, 10, 21-33. doi:10.1016/j.bspc.2013.12.003
Nunes, T. M., Coelho, A. L. V., Lima, C. A. M., Papa, J. P., & de Albuquerque, V. H. C. (2014). EEG signal classification for epilepsy diagnosis via optimum path forest – A systematic assessment. Neurocomputing, 136, 103-123. doi:10.1016/j.neucom.2014.01.020
Poh, N., & Bengio, S. (2005). How do correlation and variance of base-experts affect fusion in biometric authentication tasks? IEEE Transactions on Signal Processing, 53(11), 4384-4396. doi:10.1109/tsp.2005.857006
Rivet, B., Wang, W., Naqvi, S. M., & Chambers, J. A. (2014). Audiovisual Speech Source Separation: An overview of key methodologies. IEEE Signal Processing Magazine, 31(3), 125-134. doi:10.1109/msp.2013.2296173
Salazar, A., & Vergara, L. (2010). ICA Mixtures Applied to Ultrasonic Nondestructive Classification of Archaeological Ceramics. EURASIP Journal on Advances in Signal Processing, 2010(1). doi:10.1155/2010/125201
Soriano, A., Vergara, L., Ahmed, B., & Salazar, A. (2015). Fusion of Scores in a Detection Context Based on Alpha Integration. Neural Computation, 27(9), 1983-2010. doi:10.1162/neco_a_00766
Vergara, L., Soriano, A., Safont, G., & Salazar, A. (2016). On the fusion of non-independent detectors. Digital Signal Processing, 50, 24-33. doi:10.1016/j.dsp.2015.11.009
Wang, S., Hua, G., Hao, G., & Xie, C. (2017). A Cycle Deep Belief Network Model for Multivariate Time Series Classification. Mathematical Problems in Engineering, 2017, 1-7. doi:10.1155/2017/9549323
Wu, D. (2009). Parameter Estimation for α-GMM Based on Maximum Likelihood Criterion. Neural Computation, 21(6), 1776-1795. doi:10.1162/neco.2008.04-08-776
Xie, B., & Hlaing Minn. (2012). Real-Time Sleep Apnea Detection by Classifier Combination. IEEE Transactions on Information Technology in Biomedicine, 16(3), 469-477. doi:10.1109/titb.2012.2188299
Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty Years of Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 1177-1193. doi:10.1109/tnnls.2012.2200299
Zhang, J., Wu, Y., Bai, J., & Chen, F. (2015). Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Transactions of the Institute of Measurement and Control, 38(4), 435-451. doi:10.1177/0142331215587568
[-]