- -

Multiclass Alpha Integration of Scores from Multiple Classifiers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiclass Alpha Integration of Scores from Multiple Classifiers

Mostrar el registro completo del ítem

Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L. (2019). Multiclass Alpha Integration of Scores from Multiple Classifiers. Neural Computation. 31(4):806-825. https://doi.org/10.1162/neco_a_01169

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159843

Ficheros en el ítem

Metadatos del ítem

Título: Multiclass Alpha Integration of Scores from Multiple Classifiers
Autor: Safont Armero, Gonzalo Salazar Afanador, Addisson Vergara Domínguez, Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Alpha integration methods have been used for integrating stochastic models and fusion in the context of detection (binary classification). Our work proposes separated score integration (SSI), a new method based on ...[+]
Palabras clave: Soft fusion , Alpha integration , Classification , EEG , Ultrasounds
Derechos de uso: Reserva de todos los derechos
Fuente:
Neural Computation. (issn: 0899-7667 )
DOI: 10.1162/neco_a_01169
Editorial:
MIT Press
Versión del editor: https://doi.org/10.1162/neco_a_01169
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F032/ES/TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/
Agradecimientos:
This work was supported by the Spanish Administration and European Union under grant TEC2017-84743-P and Generalitat Valenciana under grant PROMETEO II/2014/032.
Tipo: Artículo

References

Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. doi:10.1016/j.eswa.2013.12.003

Amari, S. (2007). Integration of Stochastic Models by Minimizing α-Divergence. Neural Computation, 19(10), 2780-2796. doi:10.1162/neco.2007.19.10.2780

Amari, S. (2016). Information Geometry and Its Applications. Applied Mathematical Sciences. doi:10.1007/978-4-431-55978-8 [+]
Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. doi:10.1016/j.eswa.2013.12.003

Amari, S. (2007). Integration of Stochastic Models by Minimizing α-Divergence. Neural Computation, 19(10), 2780-2796. doi:10.1162/neco.2007.19.10.2780

Amari, S. (2016). Information Geometry and Its Applications. Applied Mathematical Sciences. doi:10.1007/978-4-431-55978-8

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907

Choi, H., Choi, S., & Choe, Y. (2013). Parameter Learning for Alpha Integration. Neural Computation, 25(6), 1585-1604. doi:10.1162/neco_a_00445

Eltoft, T. (2006). Modeling the amplitude statistics of ultrasonic images. IEEE Transactions on Medical Imaging, 25(2), 229-240. doi:10.1109/tmi.2005.862664

Abdel Fattah, M. (2015). New term weighting schemes with combination of multiple classifiers for sentiment analysis. Neurocomputing, 167, 434-442. doi:10.1016/j.neucom.2015.04.051

Hjorth, B. (1973). The physical significance of time domain descriptors in EEG analysis. Electroencephalography and Clinical Neurophysiology, 34(3), 321-325. doi:10.1016/0013-4694(73)90260-5

Kevric, J., Jukic, S., & Subasi, A. (2016). An effective combining classifier approach using tree algorithms for network intrusion detection. Neural Computing and Applications, 28(S1), 1051-1058. doi:10.1007/s00521-016-2418-1

Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28-44. doi:10.1016/j.inffus.2011.08.001

Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226-239. doi:10.1109/34.667881

Lahat, D., Adali, T., & Jutten, C. (2015). Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proceedings of the IEEE, 103(9), 1449-1477. doi:10.1109/jproc.2015.2460697

Mohandes, M., Deriche, M., & Aliyu, S. O. (2018). Classifiers Combination Techniques: A Comprehensive Review. IEEE Access, 6, 19626-19639. doi:10.1109/access.2018.2813079

Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C. M., & White, P. R. (2014). Signal processing techniques applied to human sleep EEG signals—A review. Biomedical Signal Processing and Control, 10, 21-33. doi:10.1016/j.bspc.2013.12.003

Nunes, T. M., Coelho, A. L. V., Lima, C. A. M., Papa, J. P., & de Albuquerque, V. H. C. (2014). EEG signal classification for epilepsy diagnosis via optimum path forest – A systematic assessment. Neurocomputing, 136, 103-123. doi:10.1016/j.neucom.2014.01.020

Poh, N., & Bengio, S. (2005). How do correlation and variance of base-experts affect fusion in biometric authentication tasks? IEEE Transactions on Signal Processing, 53(11), 4384-4396. doi:10.1109/tsp.2005.857006

Rivet, B., Wang, W., Naqvi, S. M., & Chambers, J. A. (2014). Audiovisual Speech Source Separation: An overview of key methodologies. IEEE Signal Processing Magazine, 31(3), 125-134. doi:10.1109/msp.2013.2296173

Salazar, A., & Vergara, L. (2010). ICA Mixtures Applied to Ultrasonic Nondestructive Classification of Archaeological Ceramics. EURASIP Journal on Advances in Signal Processing, 2010(1). doi:10.1155/2010/125201

Soriano, A., Vergara, L., Ahmed, B., & Salazar, A. (2015). Fusion of Scores in a Detection Context Based on Alpha Integration. Neural Computation, 27(9), 1983-2010. doi:10.1162/neco_a_00766

Vergara, L., Soriano, A., Safont, G., & Salazar, A. (2016). On the fusion of non-independent detectors. Digital Signal Processing, 50, 24-33. doi:10.1016/j.dsp.2015.11.009

Wang, S., Hua, G., Hao, G., & Xie, C. (2017). A Cycle Deep Belief Network Model for Multivariate Time Series Classification. Mathematical Problems in Engineering, 2017, 1-7. doi:10.1155/2017/9549323

Wu, D. (2009). Parameter Estimation for α-GMM Based on Maximum Likelihood Criterion. Neural Computation, 21(6), 1776-1795. doi:10.1162/neco.2008.04-08-776

Xie, B., & Hlaing Minn. (2012). Real-Time Sleep Apnea Detection by Classifier Combination. IEEE Transactions on Information Technology in Biomedicine, 16(3), 469-477. doi:10.1109/titb.2012.2188299

Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty Years of Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 1177-1193. doi:10.1109/tnnls.2012.2200299

Zhang, J., Wu, Y., Bai, J., & Chen, F. (2015). Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Transactions of the Institute of Measurement and Control, 38(4), 435-451. doi:10.1177/0142331215587568

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem