- -

Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

Mostrar el registro completo del ítem

Zhao, X.; Mclain, MA.; Vijande, J.; Ferrando, A.; Carr, LD.; Garcia March, MA. (2019). Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap. NEW JOURNAL OF PHYSICS. 21:1-13. https://doi.org/10.1088/1367-2630/ab0cb0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159846

Ficheros en el ítem

Metadatos del ítem

Título: Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap
Autor: Zhao, Xinxin McLain, Marie A. Vijande, J. Ferrando, A. Carr, Lincoln D. Garcia March, Miguel Angel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] A vortex in a Bose-Einstein condensate on a ring undergoes quantum dynamics in response to a quantum quench in terms of partial symmetry breaking from a uniform lattice to a biperiodic one. Neither the current, a ...[+]
Palabras clave: Partial symmetry breaking , Ultracold boson , Ring trap , Nonequilibrium quantum dynamics
Derechos de uso: Reconocimiento (by)
Fuente:
NEW JOURNAL OF PHYSICS. (issn: 1367-2630 )
DOI: 10.1088/1367-2630/ab0cb0
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1367-2630/ab0cb0
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/
...[+]
info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/
info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/
info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/
info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/
info:eu-repo/grantAgreement/MINECO//FPA2016-77177-C2-1-P/ES/FISICA HADRONICA, INTERACCIONES FUNDAMENTALES Y FISICA NUCLEAR/
info:eu-repo/grantAgreement/NSF//1839232/US/RAISE-TAQS: Entanglement and information in complex networks of qubits/
info:eu-repo/grantAgreement/NSF//1806372/US/Complex Networks on Quantum States in AMO Platforms/
info:eu-repo/grantAgreement/NSF//1748958/US/Kavli Institute for Theoretical Physics/
info:eu-repo/grantAgreement/NSF//1740130/US/SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/
info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F066/ES/Estructura Quark de la materia/
info:eu-repo/grantAgreement/UV//INV-AE16-514545/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-86102-C2-1-R/ES/DISPOSITIVOS ACTIVOS FOTONICOS BASADOS EN NANOESTRUCTURAS SEMICONDUCTORAS TIPO PEROVSKITA/
info:eu-repo/grantAgreement/AFOSR//FA9550-14-1-0287/
[-]
Agradecimientos:
The authors thank Diego Alcala, Daniel Jaschke, Marc Valdez, and BiaoWufor helpful discussions. LDC acknowledges the University of Valencia for graciously hosting him on several occasions throughout work on this project. ...[+]
Tipo: Artículo

References

Buluta, I., & Nori, F. (2009). Quantum Simulators. Science, 326(5949), 108-111. doi:10.1126/science.1177838

Eisert, J., Friesdorf, M., & Gogolin, C. (2015). Quantum many-body systems out of equilibrium. Nature Physics, 11(2), 124-130. doi:10.1038/nphys3215

Thingna, J., Manzano, D., & Cao, J. (2016). Dynamical signatures of molecular symmetries in nonequilibrium quantum transport. Scientific Reports, 6(1). doi:10.1038/srep28027 [+]
Buluta, I., & Nori, F. (2009). Quantum Simulators. Science, 326(5949), 108-111. doi:10.1126/science.1177838

Eisert, J., Friesdorf, M., & Gogolin, C. (2015). Quantum many-body systems out of equilibrium. Nature Physics, 11(2), 124-130. doi:10.1038/nphys3215

Thingna, J., Manzano, D., & Cao, J. (2016). Dynamical signatures of molecular symmetries in nonequilibrium quantum transport. Scientific Reports, 6(1). doi:10.1038/srep28027

Lai, C.-Y., & Chien, C.-C. (2017). Quantification of the memory effect of steady-state currents from interaction-induced transport in quantum systems. Physical Review A, 96(3). doi:10.1103/physreva.96.033628

Polkovnikov, A., Sengupta, K., Silva, A., & Vengalattore, M. (2011). Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics, 83(3), 863-883. doi:10.1103/revmodphys.83.863

Cheneau, M., Barmettler, P., Poletti, D., Endres, M., Schauß, P., Fukuhara, T., … Kuhr, S. (2012). Light-cone-like spreading of correlations in a quantum many-body system. Nature, 481(7382), 484-487. doi:10.1038/nature10748

Richerme, P., Gong, Z.-X., Lee, A., Senko, C., Smith, J., Foss-Feig, M., … Monroe, C. (2014). Non-local propagation of correlations in quantum systems with long-range interactions. Nature, 511(7508), 198-201. doi:10.1038/nature13450

Langen, T., Erne, S., Geiger, R., Rauer, B., Schweigler, T., Kuhnert, M., … Schmiedmayer, J. (2015). Experimental observation of a generalized Gibbs ensemble. Science, 348(6231), 207-211. doi:10.1126/science.1257026

Gobert, D., Kollath, C., Schollwöck, U., & Schütz, G. (2005). Real-time dynamics in spin-12chains with adaptive time-dependent density matrix renormalization group. Physical Review E, 71(3). doi:10.1103/physreve.71.036102

Kollath, C., Läuchli, A. M., & Altman, E. (2007). Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model. Physical Review Letters, 98(18). doi:10.1103/physrevlett.98.180601

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Calandra, M., & Mauri, F. (2007). Electronic structure of heavily doped graphene: The role of foreign atom states. Physical Review B, 76(16). doi:10.1103/physrevb.76.161406

Haddad, L. H., & Carr, L. D. (2011). Relativistic linear stability equations for the nonlinear Dirac equation in Bose-Einstein condensates. EPL (Europhysics Letters), 94(5), 56002. doi:10.1209/0295-5075/94/56002

Bloch, I., Dalibard, J., & Nascimbène, S. (2012). Quantum simulations with ultracold quantum gases. Nature Physics, 8(4), 267-276. doi:10.1038/nphys2259

Henderson, K., Ryu, C., MacCormick, C., & Boshier, M. G. (2009). Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New Journal of Physics, 11(4), 043030. doi:10.1088/1367-2630/11/4/043030

Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B., & Campbell, G. K. (2018). A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab. Physical Review X, 8(2). doi:10.1103/physrevx.8.021021

Demokritov, S. O., Serga, A. A., Demidov, V. E., Hillebrands, B., Kostylev, M. P., & Kalinikos, B. A. (2003). Experimental observation of symmetry-breaking nonlinear modes in an active ring. Nature, 426(6963), 159-162. doi:10.1038/nature02042

Corman, L., Chomaz, L., Bienaimé, T., Desbuquois, R., Weitenberg, C., Nascimbène, S., … Beugnon, J. (2014). Quench-Induced Supercurrents in an Annular Bose Gas. Physical Review Letters, 113(13). doi:10.1103/physrevlett.113.135302

C Ryu, & Boshier, M. G. (2015). Integrated coherent matter wave circuits. New Journal of Physics, 17(9), 092002. doi:10.1088/1367-2630/17/9/092002

Ryu, C., Blackburn, P. W., Blinova, A. A., & Boshier, M. G. (2013). Experimental Realization of Josephson Junctions for an Atom SQUID. Physical Review Letters, 111(20). doi:10.1103/physrevlett.111.205301

Campos Venuti, L., Cozzini, M., Buonsante, P., Massel, F., Bray-Ali, N., & Zanardi, P. (2008). Fidelity approach to the Hubbard model. Physical Review B, 78(11). doi:10.1103/physrevb.78.115410

Buonsante, P., Penna, V., & Vezzani, A. (2004). Fractional-filling loophole insulator domains for ultracold bosons in optical superlattices. Physical Review A, 70(6). doi:10.1103/physreva.70.061603

Stock, S., Hadzibabic, Z., Battelier, B., Cheneau, M., & Dalibard, J. (2005). Observation of Phase Defects in Quasi-Two-Dimensional Bose-Einstein Condensates. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190403

Bakr, W. S., Peng, A., Tai, M. E., Ma, R., Simon, J., Gillen, J. I., … Greiner, M. (2010). Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level. Science, 329(5991), 547-550. doi:10.1126/science.1192368

Soltan-Panahi, P., Struck, J., Hauke, P., Bick, A., Plenkers, W., Meineke, G., … Sengstock, K. (2011). Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Physics, 7(5), 434-440. doi:10.1038/nphys1916

Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., Sen(De), A., & Sen, U. (2007). Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Advances in Physics, 56(2), 243-379. doi:10.1080/00018730701223200

Ferrando, A., Zacarés, M., García-March, M.-Á., Monsoriu, J. A., & de Córdoba, P. F. (2005). Vortex Transmutation. Physical Review Letters, 95(12). doi:10.1103/physrevlett.95.123901

Carr, L. D., Wall, M. L., Schirmer, D. G., Brown, R. C., Williams, J. E., & Clark, C. W. (2010). Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices. Physical Review A, 81(1). doi:10.1103/physreva.81.013613

Sachdev, S. (2000). Quantum Phase Transitions. doi:10.1017/cbo9780511622540

Ejima, S., Fehske, H., & Gebhard, F. (2011). Dynamic properties of the one-dimensional Bose-Hubbard model. EPL (Europhysics Letters), 93(3), 30002. doi:10.1209/0295-5075/93/30002

Carrasquilla, J., Manmana, S. R., & Rigol, M. (2013). Scaling of the gap, fidelity susceptibility, and Bloch oscillations across the superfluid-to-Mott-insulator transition in the one-dimensional Bose-Hubbard model. Physical Review A, 87(4). doi:10.1103/physreva.87.043606

Kanamoto, R., Carr, L. D., & Ueda, M. (2010). Metastable quantum phase transitions in a periodic one-dimensional Bose gas. II. Many-body theory. Physical Review A, 81(2). doi:10.1103/physreva.81.023625

Schollwöck, U. (2005). The density-matrix renormalization group. Reviews of Modern Physics, 77(1), 259-315. doi:10.1103/revmodphys.77.259

Sebby-Strabley, J., Anderlini, M., Jessen, P. S., & Porto, J. V. (2006). Lattice of double wells for manipulating pairs of cold atoms. Physical Review A, 73(3). doi:10.1103/physreva.73.033605

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem