- -

Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhao, Xinxin es_ES
dc.contributor.author McLain, Marie A. es_ES
dc.contributor.author Vijande, J. es_ES
dc.contributor.author Ferrando, A. es_ES
dc.contributor.author Carr, Lincoln D. es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.date.accessioned 2021-01-26T04:32:15Z
dc.date.available 2021-01-26T04:32:15Z
dc.date.issued 2019-04-23 es_ES
dc.identifier.issn 1367-2630 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159846
dc.description.abstract [EN] A vortex in a Bose-Einstein condensate on a ring undergoes quantum dynamics in response to a quantum quench in terms of partial symmetry breaking from a uniform lattice to a biperiodic one. Neither the current, a macroscopic measure, nor fidelity, a microscopic measure, exhibit critical behavior. Instead, the symmetry memory succeeds in identifying the critical symmetry breaking at which the system begins to forget its initial symmetry state. We further identify a symmetry energy difference in the low lying excited states which trends with the symmetry memory. es_ES
dc.description.sponsorship The authors thank Diego Alcala, Daniel Jaschke, Marc Valdez, and BiaoWufor helpful discussions. LDC acknowledges the University of Valencia for graciously hosting him on several occasions throughout work on this project. MAGM acknowledges the Fulbright commision, the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVEROOCHOA No. SEV-2015-0522), Fundacio Privada Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS, EUFETPRO QUIC, and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. This material is based in part upon work supported by Ministerio de Educacion y Ciencia and EU FEDER under Contract FPA2016-77177 and by Generalitat Valenciana PrometeoII/2014/066(JV), UV-INV-AE16-514545 and MINECO TEC2017-86102-C2-1-R (AF), the US National Science Foundation under grant numbers PHY-1806372, PHY-1748958 OAC-1740130, and CCF-1839232 (LDC), the US Air Force Office of Scientific Research grant number FA9550-14-1-0287 (LDC), the Alexander von Humboldt Foundation (LDC), the Heidelberg Center for Quantum Dynamics (LDC), and the China Scholarship Council (XXZ). es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof NEW JOURNAL OF PHYSICS es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Partial symmetry breaking es_ES
dc.subject Ultracold boson es_ES
dc.subject Ring trap es_ES
dc.subject Nonequilibrium quantum dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/ab0cb0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPA2016-77177-C2-1-P/ES/FISICA HADRONICA, INTERACCIONES FUNDAMENTALES Y FISICA NUCLEAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1839232/US/RAISE-TAQS: Entanglement and information in complex networks of qubits/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1806372/US/Complex Networks on Quantum States in AMO Platforms/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1748958/US/Kavli Institute for Theoretical Physics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1740130/US/SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F066/ES/Estructura Quark de la materia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//INV-AE16-514545/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-86102-C2-1-R/ES/DISPOSITIVOS ACTIVOS FOTONICOS BASADOS EN NANOESTRUCTURAS SEMICONDUCTORAS TIPO PEROVSKITA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AFOSR//FA9550-14-1-0287/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Zhao, X.; Mclain, MA.; Vijande, J.; Ferrando, A.; Carr, LD.; Garcia March, MA. (2019). Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap. NEW JOURNAL OF PHYSICS. 21:1-13. https://doi.org/10.1088/1367-2630/ab0cb0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1367-2630/ab0cb0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.relation.pasarela S\409887 es_ES
dc.contributor.funder Fundación Cellex es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Air Force Office of Scientific Research es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Buluta, I., & Nori, F. (2009). Quantum Simulators. Science, 326(5949), 108-111. doi:10.1126/science.1177838 es_ES
dc.description.references Eisert, J., Friesdorf, M., & Gogolin, C. (2015). Quantum many-body systems out of equilibrium. Nature Physics, 11(2), 124-130. doi:10.1038/nphys3215 es_ES
dc.description.references Thingna, J., Manzano, D., & Cao, J. (2016). Dynamical signatures of molecular symmetries in nonequilibrium quantum transport. Scientific Reports, 6(1). doi:10.1038/srep28027 es_ES
dc.description.references Lai, C.-Y., & Chien, C.-C. (2017). Quantification of the memory effect of steady-state currents from interaction-induced transport in quantum systems. Physical Review A, 96(3). doi:10.1103/physreva.96.033628 es_ES
dc.description.references Polkovnikov, A., Sengupta, K., Silva, A., & Vengalattore, M. (2011). Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics, 83(3), 863-883. doi:10.1103/revmodphys.83.863 es_ES
dc.description.references Cheneau, M., Barmettler, P., Poletti, D., Endres, M., Schauß, P., Fukuhara, T., … Kuhr, S. (2012). Light-cone-like spreading of correlations in a quantum many-body system. Nature, 481(7382), 484-487. doi:10.1038/nature10748 es_ES
dc.description.references Richerme, P., Gong, Z.-X., Lee, A., Senko, C., Smith, J., Foss-Feig, M., … Monroe, C. (2014). Non-local propagation of correlations in quantum systems with long-range interactions. Nature, 511(7508), 198-201. doi:10.1038/nature13450 es_ES
dc.description.references Langen, T., Erne, S., Geiger, R., Rauer, B., Schweigler, T., Kuhnert, M., … Schmiedmayer, J. (2015). Experimental observation of a generalized Gibbs ensemble. Science, 348(6231), 207-211. doi:10.1126/science.1257026 es_ES
dc.description.references Gobert, D., Kollath, C., Schollwöck, U., & Schütz, G. (2005). Real-time dynamics in spin-12chains with adaptive time-dependent density matrix renormalization group. Physical Review E, 71(3). doi:10.1103/physreve.71.036102 es_ES
dc.description.references Kollath, C., Läuchli, A. M., & Altman, E. (2007). Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model. Physical Review Letters, 98(18). doi:10.1103/physrevlett.98.180601 es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Calandra, M., & Mauri, F. (2007). Electronic structure of heavily doped graphene: The role of foreign atom states. Physical Review B, 76(16). doi:10.1103/physrevb.76.161406 es_ES
dc.description.references Haddad, L. H., & Carr, L. D. (2011). Relativistic linear stability equations for the nonlinear Dirac equation in Bose-Einstein condensates. EPL (Europhysics Letters), 94(5), 56002. doi:10.1209/0295-5075/94/56002 es_ES
dc.description.references Bloch, I., Dalibard, J., & Nascimbène, S. (2012). Quantum simulations with ultracold quantum gases. Nature Physics, 8(4), 267-276. doi:10.1038/nphys2259 es_ES
dc.description.references Henderson, K., Ryu, C., MacCormick, C., & Boshier, M. G. (2009). Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New Journal of Physics, 11(4), 043030. doi:10.1088/1367-2630/11/4/043030 es_ES
dc.description.references Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B., & Campbell, G. K. (2018). A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab. Physical Review X, 8(2). doi:10.1103/physrevx.8.021021 es_ES
dc.description.references Demokritov, S. O., Serga, A. A., Demidov, V. E., Hillebrands, B., Kostylev, M. P., & Kalinikos, B. A. (2003). Experimental observation of symmetry-breaking nonlinear modes in an active ring. Nature, 426(6963), 159-162. doi:10.1038/nature02042 es_ES
dc.description.references Corman, L., Chomaz, L., Bienaimé, T., Desbuquois, R., Weitenberg, C., Nascimbène, S., … Beugnon, J. (2014). Quench-Induced Supercurrents in an Annular Bose Gas. Physical Review Letters, 113(13). doi:10.1103/physrevlett.113.135302 es_ES
dc.description.references C Ryu, & Boshier, M. G. (2015). Integrated coherent matter wave circuits. New Journal of Physics, 17(9), 092002. doi:10.1088/1367-2630/17/9/092002 es_ES
dc.description.references Ryu, C., Blackburn, P. W., Blinova, A. A., & Boshier, M. G. (2013). Experimental Realization of Josephson Junctions for an Atom SQUID. Physical Review Letters, 111(20). doi:10.1103/physrevlett.111.205301 es_ES
dc.description.references Campos Venuti, L., Cozzini, M., Buonsante, P., Massel, F., Bray-Ali, N., & Zanardi, P. (2008). Fidelity approach to the Hubbard model. Physical Review B, 78(11). doi:10.1103/physrevb.78.115410 es_ES
dc.description.references Buonsante, P., Penna, V., & Vezzani, A. (2004). Fractional-filling loophole insulator domains for ultracold bosons in optical superlattices. Physical Review A, 70(6). doi:10.1103/physreva.70.061603 es_ES
dc.description.references Stock, S., Hadzibabic, Z., Battelier, B., Cheneau, M., & Dalibard, J. (2005). Observation of Phase Defects in Quasi-Two-Dimensional Bose-Einstein Condensates. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190403 es_ES
dc.description.references Bakr, W. S., Peng, A., Tai, M. E., Ma, R., Simon, J., Gillen, J. I., … Greiner, M. (2010). Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level. Science, 329(5991), 547-550. doi:10.1126/science.1192368 es_ES
dc.description.references Soltan-Panahi, P., Struck, J., Hauke, P., Bick, A., Plenkers, W., Meineke, G., … Sengstock, K. (2011). Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Physics, 7(5), 434-440. doi:10.1038/nphys1916 es_ES
dc.description.references Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., Sen(De), A., & Sen, U. (2007). Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Advances in Physics, 56(2), 243-379. doi:10.1080/00018730701223200 es_ES
dc.description.references Ferrando, A., Zacarés, M., García-March, M.-Á., Monsoriu, J. A., & de Córdoba, P. F. (2005). Vortex Transmutation. Physical Review Letters, 95(12). doi:10.1103/physrevlett.95.123901 es_ES
dc.description.references Carr, L. D., Wall, M. L., Schirmer, D. G., Brown, R. C., Williams, J. E., & Clark, C. W. (2010). Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices. Physical Review A, 81(1). doi:10.1103/physreva.81.013613 es_ES
dc.description.references Sachdev, S. (2000). Quantum Phase Transitions. doi:10.1017/cbo9780511622540 es_ES
dc.description.references Ejima, S., Fehske, H., & Gebhard, F. (2011). Dynamic properties of the one-dimensional Bose-Hubbard model. EPL (Europhysics Letters), 93(3), 30002. doi:10.1209/0295-5075/93/30002 es_ES
dc.description.references Carrasquilla, J., Manmana, S. R., & Rigol, M. (2013). Scaling of the gap, fidelity susceptibility, and Bloch oscillations across the superfluid-to-Mott-insulator transition in the one-dimensional Bose-Hubbard model. Physical Review A, 87(4). doi:10.1103/physreva.87.043606 es_ES
dc.description.references Kanamoto, R., Carr, L. D., & Ueda, M. (2010). Metastable quantum phase transitions in a periodic one-dimensional Bose gas. II. Many-body theory. Physical Review A, 81(2). doi:10.1103/physreva.81.023625 es_ES
dc.description.references Schollwöck, U. (2005). The density-matrix renormalization group. Reviews of Modern Physics, 77(1), 259-315. doi:10.1103/revmodphys.77.259 es_ES
dc.description.references Sebby-Strabley, J., Anderlini, M., Jessen, P. S., & Porto, J. V. (2006). Lattice of double wells for manipulating pairs of cold atoms. Physical Review A, 73(3). doi:10.1103/physreva.73.033605 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem