- -

Citrus exocortis viroid causes ribosomal stress in tomato plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Citrus exocortis viroid causes ribosomal stress in tomato plants

Mostrar el registro completo del ítem

Cottilli, P.; Belda-Palazón, B.; Adkar-Purushothama, CR.; Perreault, J.; Schleiff, E.; Rodrigo Bravo, I.; Ferrando Monleón, AR.... (2019). Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research. 47(16):8649-8661. https://doi.org/10.1093/nar/gkz679

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159849

Ficheros en el ítem

Metadatos del ítem

Título: Citrus exocortis viroid causes ribosomal stress in tomato plants
Autor: Cottilli, Patrick Belda-Palazón, Borja Adkar-Purushothama, Charith Raj Perreault, Jean-Pierre Schleiff, Enrico Rodrigo Bravo, Ismael Ferrando Monleón, Alejandro Ramón Lisón, Purificación
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Viroids are naked RNAs that do not code for any known protein and yet are able to infect plants causing severe diseases. Because of their RNA nature, many studies have focused on the involvement of viroids in RNA-mediated ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Nucleic Acids Research. (issn: 0305-1048 )
DOI: 10.1093/nar/gkz679
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/nar/gkz679
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2009-11818/ES/Hipusinacion Del Factor Eif5A Y Muerte Celular Inducida Por Estres En Plantas/
...[+]
info:eu-repo/grantAgreement/MICINN//BIO2009-11818/ES/Hipusinacion Del Factor Eif5A Y Muerte Celular Inducida Por Estres En Plantas/
info:eu-repo/grantAgreement/NSERC//155219-17/
info:eu-repo/grantAgreement/MINECO//BIO2015-70483-R/ES/PAPEL DE LA ESPERMIDINA Y DE LA BIOSINTESIS DE PROTEINAS EN LA TOLERANCIA DEL POLEN A LAS ALTAS TEMPERATURAS/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/
info:eu-repo/grantAgreement/DFG//SFB 902/
info:eu-repo/grantAgreement/MICINN//BFU2009-11958/ES/Señalizacion Y Respuesta Defensiva De Las Plantas Frente A Patogenos/
info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F048/
[-]
Agradecimientos:
Spanish Ministry of Science, Innovation and Universities [BIO2009-11818, BIO2015-70483-R to A.F.]; Spanish Ministry of Science, Innovation and Universities [BFU2009-11958]; Generalitat Valenciana (Valencia, Spain) ...[+]
Tipo: Artículo

References

Di Serio, F., & Flores, R. (2008). Viroids: Molecular implements for dissecting RNA trafficking in plants. RNA Biology, 5(3), 128-131. doi:10.4161/rna.5.3.6638

Flores, R., Owens, R. A., & Taylor, J. (2016). Pathogenesis by subviral agents: viroids and hepatitis delta virus. Current Opinion in Virology, 17, 87-94. doi:10.1016/j.coviro.2016.01.022

Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6 [+]
Di Serio, F., & Flores, R. (2008). Viroids: Molecular implements for dissecting RNA trafficking in plants. RNA Biology, 5(3), 128-131. doi:10.4161/rna.5.3.6638

Flores, R., Owens, R. A., & Taylor, J. (2016). Pathogenesis by subviral agents: viroids and hepatitis delta virus. Current Opinion in Virology, 17, 87-94. doi:10.1016/j.coviro.2016.01.022

Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6

Vogt, U., Pélissier, T., Pütz, A., Razvi, F., Fischer, R., & Wassenegger, M. (2004). Viroid-induced RNA silencing of GFP-viroid fusion transgenes does not induce extensive spreading of methylation or transitive silencing. The Plant Journal, 38(1), 107-118. doi:10.1111/j.1365-313x.2004.02029.x

Martínez de Alba, A. E., Flores, R., & Hernández, C. (2002). Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing. Journal of Virology, 76(24), 13094-13096. doi:10.1128/jvi.76.24.13094-13096.2002

Markarian, N., Li, H. W., Ding, S. W., & Semancik, J. S. (2004). RNA silencing as related to viroid induced symptom expression. Archives of Virology, 149(2), 397-406. doi:10.1007/s00705-003-0215-5

Carbonell, A., Martínez de Alba, Á.-E., Flores, R., & Gago, S. (2008). Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 371(1), 44-53. doi:10.1016/j.virol.2007.09.031

St-Pierre, P., Hassen, I. F., Thompson, D., & Perreault, J. P. (2009). Characterization of the siRNAs associated with peach latent mosaic viroid infection. Virology, 383(2), 178-182. doi:10.1016/j.virol.2008.11.008

MARTINEZ, G., DONAIRE, L., LLAVE, C., PALLAS, V., & GOMEZ, G. (2010). High-throughput sequencing ofHop stunt viroid-derived small RNAs from cucumber leaves and phloem. Molecular Plant Pathology, 11(3), 347-359. doi:10.1111/j.1364-3703.2009.00608.x

Ivanova, D., Milev, I., Vachev, T., Baev, V., Yahubyan, G., Minkov, G., & Gozmanova, M. (2014). Small RNA analysis of Potato Spindle Tuber Viroid infected Phelipanche ramosa. Plant Physiology and Biochemistry, 74, 276-282. doi:10.1016/j.plaphy.2013.11.019

Islam, W., Noman, A., Qasim, M., & Wang, L. (2018). Plant Responses to Pathogen Attack: Small RNAs in Focus. International Journal of Molecular Sciences, 19(2), 515. doi:10.3390/ijms19020515

Minoia, S., Carbonell, A., Di Serio, F., Gisel, A., Carrington, J. C., Navarro, B., & Flores, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology, 88(20), 11933-11945. doi:10.1128/jvi.01404-14

Katsarou, K., Mavrothalassiti, E., Dermauw, W., Van Leeuwen, T., & Kalantidis, K. (2016). Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid. PLOS Pathogens, 12(10), e1005936. doi:10.1371/journal.ppat.1005936

Dadami, E., Boutla, A., Vrettos, N., Tzortzakaki, S., Karakasilioti, I., & Kalantidis, K. (2013). DICER-LIKE 4 But Not DICER-LIKE 2 May Have a Positive Effect on Potato Spindle Tuber Viroid Accumulation in Nicotiana benthamiana. Molecular Plant, 6(1), 232-234. doi:10.1093/mp/sss118

Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x

Eamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.019

Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523

Adkar-Purushothama, C. R., Iyer, P. S., & Perreault, J.-P. (2017). Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and Ribosomal protein S3a-like mRNAs in tomato plants. Scientific Reports, 7(1). doi:10.1038/s41598-017-08823-z

Carbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529

Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., … Rodrigo, I. (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. PROTEOMICS, 13(5), 833-844. doi:10.1002/pmic.201200286

Dubé, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09

Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-x

Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968

Castellano, M., Martinez, G., Marques, M. C., Moreno-Romero, J., Köhler, C., Pallas, V., & Gomez, G. (2016). Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants. Journal of Experimental Botany, 67(19), 5857-5868. doi:10.1093/jxb/erw353

Mills, E. W., & Green, R. (2017). Ribosomopathies: There’s strength in numbers. Science, 358(6363), eaan2755. doi:10.1126/science.aan2755

Mayer, C., & Grummt, I. (2005). Cellular Stress and Nucleolar Function. Cell Cycle, 4(8), 1036-1038. doi:10.4161/cc.4.8.1925

Boulon, S., Westman, B. J., Hutten, S., Boisvert, F.-M., & Lamond, A. I. (2010). The Nucleolus under Stress. Molecular Cell, 40(2), 216-227. doi:10.1016/j.molcel.2010.09.024

Ohbayashi, I., & Sugiyama, M. (2018). Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.02247

Weis, B. L., Kovacevic, J., Missbach, S., & Schleiff, E. (2015). Plant-Specific Features of Ribosome Biogenesis. Trends in Plant Science, 20(11), 729-740. doi:10.1016/j.tplants.2015.07.003

Waltz, F., Nguyen, T.-T., Arrivé, M., Bochler, A., Chicher, J., Hammann, P., … Giegé, P. (2019). Small is big in Arabidopsis mitochondrial ribosome. Nature Plants, 5(1), 106-117. doi:10.1038/s41477-018-0339-y

Ohbayashi, I., Lin, C.-Y., Shinohara, N., Matsumura, Y., Machida, Y., Horiguchi, G., … Sugiyama, M. (2017). Evidence for a Role of ANAC082 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis. The Plant Cell, 29(10), 2644-2660. doi:10.1105/tpc.17.00255

Kressler, D., Hurt, E., & Baßler, J. (2017). A Puzzle of Life: Crafting Ribosomal Subunits. Trends in Biochemical Sciences, 42(8), 640-654. doi:10.1016/j.tibs.2017.05.005

Rorbach, J., Aibara, S., & Amunts, A. (2017). Ribosome origami. Nature Structural & Molecular Biology, 24(11), 879-881. doi:10.1038/nsmb.3497

Ahmed, T., Yin, Z., & Bhushan, S. (2016). Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Scientific Reports, 6(1). doi:10.1038/srep35793

Henras, A. K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., & Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cellular and Molecular Life Sciences, 65(15), 2334-2359. doi:10.1007/s00018-008-8027-0

Baßler, J., & Hurt, E. (2019). Eukaryotic Ribosome Assembly. Annual Review of Biochemistry, 88(1), 281-306. doi:10.1146/annurev-biochem-013118-110817

Hang, R., Wang, Z., Deng, X., Liu, C., Yan, B., Yang, C., … Cao, X. (2018). Ribosomal RNA Biogenesis and Its Response to Chilling Stress in Oryza sativa. Plant Physiology, 177(1), 381-397. doi:10.1104/pp.17.01714

Palm, D., Streit, D., Shanmugam, T., Weis, B. L., Ruprecht, M., Simm, S., & Schleiff, E. (2018). Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Research, 47(4), 1880-1895. doi:10.1093/nar/gky1261

Tomecki, R., Sikorski, P. J., & Zakrzewska-Placzek, M. (2017). Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Letters, 591(13), 1801-1850. doi:10.1002/1873-3468.12682

Perry, K. L., & Palukaitis, P. (1990). Transcription of tomato ribosomal DNA and the organization of the intergenic spacer. Molecular and General Genetics MGG, 221(1), 102-112. doi:10.1007/bf00280374

Echevarría-Zomeño, S., Yángüez, E., Fernández-Bautista, N., Castro-Sanz, A., Ferrando, A., & Castellano, M. (2013). Regulation of Translation Initiation under Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 14(3), 4670-4683. doi:10.3390/ijms14034670

Wang, Z., Ying, T., Bao, B., & Huang, X. (2005). Characteristics of fruit ripening in tomato mutantepi. Journal of Zhejiang University SCIENCE, 6B(6), 502-507. doi:10.1631/jzus.2005.b0502

Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053

Adkar-Purushothama, C. R., & Perreault, J.-P. (2018). Alterations of the viroid regions that interact with the host defense genes attenuate viroid infection in host plant. RNA Biology, 15(7), 955-966. doi:10.1080/15476286.2018.1462653

Rivera, M. C., Maguire, B., & Lake, J. A. (2015). Isolation of Ribosomes and Polysomes. Cold Spring Harbor Protocols, 2015(3), pdb.prot081331. doi:10.1101/pdb.prot081331

Hsu, P. Y., Calviello, L., Wu, H.-Y. L., Li, F.-W., Rothfels, C. J., Ohler, U., & Benfey, P. N. (2016). Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proceedings of the National Academy of Sciences, 113(45), E7126-E7135. doi:10.1073/pnas.1614788113

Mustroph, A., Juntawong, P., & Bailey-Serres, J. (2009). Isolation of Plant Polysomal mRNA by Differential Centrifugation and Ribosome Immunopurification Methods. Methods in Molecular Biology™, 109-126. doi:10.1007/978-1-60327-563-7_6

López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938

Missbach, S., Weis, B. L., Martin, R., Simm, S., Bohnsack, M. T., & Schleiff, E. (2013). 40S Ribosome Biogenesis Co-Factors Are Essential for Gametophyte and Embryo Development. PLoS ONE, 8(1), e54084. doi:10.1371/journal.pone.0054084

Verhoeven, J. th. j., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823-831. doi:10.1007/s10658-004-2493-5

Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016

Kalantidis, K., Denti, M. A., Tzortzakaki, S., Marinou, E., Tabler, M., & Tsagris, M. (2007). Virp1 Is a Host Protein with a Major Role in Potato Spindle Tuber Viroid Infection in Nicotiana Plants. Journal of Virology, 81(23), 12872-12880. doi:10.1128/jvi.00974-07

Barry, C. S., Fox, E. A., Yen, H., Lee, S., Ying, T., Grierson, D., & Giovannoni, J. J. (2001). Analysis of the Ethylene Response in theepinastic Mutant of Tomato. Plant Physiology, 127(1), 58-66. doi:10.1104/pp.127.1.58

Diener, T. O. (2003). Discovering viroids — a personal perspective. Nature Reviews Microbiology, 1(1), 75-80. doi:10.1038/nrmicro736

Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions®, 20(1), 7-20. doi:10.1094/mpmi-20-0007

Jakab, G., Kiss, T., & Solymosy, F. (1986). Viroid pathogenicity and pre-rRNA processing: A model amenable to experimental testing. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 868(4), 190-197. doi:10.1016/0167-4781(86)90054-0

Meduski, C. J., & Velten, J. (1990). PSTV sequence similarity to large rRNA. Plant Molecular Biology, 14(4), 625-627. doi:10.1007/bf00027509

Kiss, T., Pósfai, J., & Solymosy, F. (1983). Sequence homology between potato spindle tuber viroid and U3B snRNA. FEBS Letters, 163(2), 217-220. doi:10.1016/0014-5793(83)80822-9

Hughes, J. M., & Ares, M. (1991). Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. The EMBO Journal, 10(13), 4231-4239. doi:10.1002/j.1460-2075.1991.tb05001.x

Sharma, K., & Tollervey, D. (1999). Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing. Molecular and Cellular Biology, 19(9), 6012-6019. doi:10.1128/mcb.19.9.6012

Dragon, F., Gallagher, J. E. G., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., … Baserga, S. J. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature, 417(6892), 967-970. doi:10.1038/nature00769

Dutca, L. M., Gallagher, J. E. G., & Baserga, S. J. (2011). The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Research, 39(12), 5164-5180. doi:10.1093/nar/gkr044

Qi, Y., & Ding, B. (2003). Differential Subnuclear Localization of RNA Strands of Opposite Polarity Derived from an Autonomously Replicating Viroid[W]. The Plant Cell, 15(11), 2566-2577. doi:10.1105/tpc.016576

Idol, R. A., Robledo, S., Du, H.-Y., Crimmins, D. L., Wilson, D. B., Ladenson, J. H., … Mason, P. J. (2007). Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells, Molecules, and Diseases, 39(1), 35-43. doi:10.1016/j.bcmd.2007.02.001

Cho, H. K., Ahn, C. S., Lee, H.-S., Kim, J.-K., & Pai, H.-S. (2013). Pescadillo plays an essential role in plant cell growth and survival by modulating ribosome biogenesis. The Plant Journal, 76(3), 393-405. doi:10.1111/tpj.12302

Weis, B. L., Missbach, S., Marzi, J., Bohnsack, M. T., & Schleiff, E. (2014). The 60S associated ribosome biogenesis factor LSG1-2 is required for 40S maturation inArabidopsis thaliana. The Plant Journal, 80(6), 1043-1056. doi:10.1111/tpj.12703

Kojima, K., Tamura, J., Chiba, H., Fukada, K., Tsukaya, H., & Horiguchi, G. (2018). Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial–Abaxial Patterning in Arabidopsis thaliana. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.02240

Maekawa, S., Ishida, T., & Yanagisawa, S. (2017). Reduced Expression of APUM24, Encoding a Novel rRNA Processing Factor, Induces Sugar-Dependent Nucleolar Stress and Altered Sugar Responses in Arabidopsis thaliana. The Plant Cell, 30(1), 209-227. doi:10.1105/tpc.17.00778

Bonfiglioli, R. G., McFadden, G. I., & Symons, R. H. (1994). In situ hybridization localizes avocado sunblotch viroid on chloroplast thylakoid membranes and coconut cadang cadang viroid in the nucleus. The Plant Journal, 6(1), 99-103. doi:10.1046/j.1365-313x.1994.6010099.x

Hill, J. M., Zhao, Y., Bhattacharjee, S., & Lukiw, W. J. (2014). miRNAs and viroids utilize common strategies in genetic signal transfer. Frontiers in Molecular Neuroscience, 7. doi:10.3389/fnmol.2014.00010

Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., … Chen, X. (2013). MicroRNAs Inhibit the Translation of Target mRNAs on the Endoplasmic Reticulum in Arabidopsis. Cell, 153(3), 562-574. doi:10.1016/j.cell.2013.04.005

Fukaya, T., Iwakawa, H., & Tomari, Y. (2014). MicroRNAs Block Assembly of eIF4F Translation Initiation Complex in Drosophila. Molecular Cell, 56(1), 67-78. doi:10.1016/j.molcel.2014.09.004

Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., Crété, P., … Robaglia, C. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. The Plant Cell, 21(6), 1762-1768. doi:10.1105/tpc.108.063412

Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033

Reis, R. S., Hart-Smith, G., Eamens, A. L., Wilkins, M. R., & Waterhouse, P. M. (2015). Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nature Plants, 1(3). doi:10.1038/nplants.2014.27

Flores, R., Navarro, B., Kovalskaya, N., Hammond, R. W., & Di Serio, F. (2017). Engineering resistance against viroids. Current Opinion in Virology, 26, 1-7. doi:10.1016/j.coviro.2017.07.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem