- -

Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water

Mostrar el registro completo del ítem

Nisticò, R.; Bianco Prevot, A.; Magnacca, G.; Canone, L.; García-Ballesteros, S.; Arqués Sanz, A. (2019). Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water. Nanomaterials. 9(8):1-14. https://doi.org/10.3390/nano9081091

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159850

Ficheros en el ítem

Metadatos del ítem

Título: Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water
Autor: Nisticò, Roberto Bianco Prevot, Alessandra Magnacca, Giuliana Canone, Lorenzo García-Ballesteros, Sara Arqués Sanz, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] The photodegradation of an aqueous solution of diclofenac (DCF) has been attempted in the presence of hydrogen peroxide and organic/inorganic hybrid magnetic materials under simulated and real solar light. The hybrid ...[+]
Palabras clave: Bio-based substances , Biomasses valorization , Chitosan , Magnetic materials , Photocatalysis , Wastewater treatments
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano9081091
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano9081091
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/645551/EU/Enhancing water quality by developing novel materials for organic pollutant removal in tertiary water treatments/
info:eu-repo/grantAgreement/POLITO//54_RSG17NIR01/
Agradecimientos:
This work was realized with financial support for academic interchange from the Marie Sklodowska-Curie Research and Innovation Staff Exchange project, funded by the European Commission H2020-MSCA-RISE-2014 within the ...[+]
Tipo: Artículo

References

Applying the Circular Economy Lens to Waterhttp://circulatenews.org/2017/01/applying-the-circular-economy-lens-to-water/

Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3-27. doi:10.1016/j.watres.2014.08.053

Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing - Process Intensification, 109, 178-189. doi:10.1016/j.cep.2016.08.016 [+]
Applying the Circular Economy Lens to Waterhttp://circulatenews.org/2017/01/applying-the-circular-economy-lens-to-water/

Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3-27. doi:10.1016/j.watres.2014.08.053

Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing - Process Intensification, 109, 178-189. doi:10.1016/j.cep.2016.08.016

Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51-59. doi:10.1016/s0920-5861(99)00102-9

Oturan, M. A., & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577-2641. doi:10.1080/10643389.2013.829765

Ghatak, H. R. (2014). Advanced Oxidation Processes for the Treatment of Biorecalcitrant Organics in Wastewater. Critical Reviews in Environmental Science and Technology, 44(11), 1167-1219. doi:10.1080/10643389.2013.763581

Richardson, S. D., & Ternes, T. A. (2017). Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 90(1), 398-428. doi:10.1021/acs.analchem.7b04577

Minella, M., Marchetti, G., De Laurentiis, E., Malandrino, M., Maurino, V., Minero, C., … Hanna, K. (2014). Photo-Fenton oxidation of phenol with magnetite as iron source. Applied Catalysis B: Environmental, 154-155, 102-109. doi:10.1016/j.apcatb.2014.02.006

Nadejde, C., Neamtu, M., Hodoroaba, V.-D., Schneider, R. J., Paul, A., Ababei, G., & Panne, U. (2015). Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants. Journal of Nanoparticle Research, 17(12). doi:10.1007/s11051-015-3290-0

Nadejde, C., Neamtu, M., Hodoroaba, V.-D., Schneider, R. J., Paul, A., Ababei, G., & Panne, U. (2015). Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application. Applied Catalysis B: Environmental, 176-177, 667-677. doi:10.1016/j.apcatb.2015.04.050

Munoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2015). Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 176-177, 249-265. doi:10.1016/j.apcatb.2015.04.003

Palma, D., Bianco Prevot, A., Celi, L., Martin, M., Fabbri, D., Magnacca, G., … Nisticò, R. (2018). Isolation, Characterization, and Environmental Application of Bio-Based Materials as Auxiliaries in Photocatalytic Processes. Catalysts, 8(5), 197. doi:10.3390/catal8050197

Franzoso, F., Nisticò, R., Cesano, F., Corazzari, I., Turci, F., Scarano, D., … Mártire, D. O. (2017). Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal, 310, 307-316. doi:10.1016/j.cej.2016.10.120

Nisticò, R., Cesano, F., Franzoso, F., Magnacca, G., Scarano, D., Funes, I. G., … Parolo, M. E. (2018). From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons. Chemosphere, 202, 686-693. doi:10.1016/j.chemosphere.2018.03.153

Nisticò, R., Franzoso, F., Cesano, F., Scarano, D., Magnacca, G., Parolo, M. E., & Carlos, L. (2016). Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustainable Chemistry & Engineering, 5(1), 793-801. doi:10.1021/acssuschemeng.6b02126

Nisticò, R., Celi, L. R., Bianco Prevot, A., Carlos, L., Magnacca, G., Zanzo, E., & Martin, M. (2018). Sustainable magnet-responsive nanomaterials for the removal of arsenic from contaminated water. Journal of Hazardous Materials, 342, 260-269. doi:10.1016/j.jhazmat.2017.08.034

Standard Methods Online Standard Methods for the Examination of Water and Wastewaterhttp://standardmethods.org/

Amat, A. ., Arques, A., Beneyto, H., Garcı́a, A., Miranda, M. A., & Seguı́, S. (2003). Ozonisation coupled with biological degradation for treatment of phenolic pollutants: a mechanistically based study. Chemosphere, 53(1), 79-86. doi:10.1016/s0045-6535(03)00450-8

Pérez-Estrada, L. A., Malato, S., Gernjak, W., Agüera, A., Thurman, E. M., Ferrer, I., & Fernández-Alba, A. R. (2005). Photo-Fenton Degradation of Diclofenac:  Identification of Main Intermediates and Degradation Pathway. Environmental Science & Technology, 39(21), 8300-8306. doi:10.1021/es050794n

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem