- -

Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nisticò, Roberto es_ES
dc.contributor.author Bianco Prevot, Alessandra es_ES
dc.contributor.author Magnacca, Giuliana es_ES
dc.contributor.author Canone, Lorenzo es_ES
dc.contributor.author García-Ballesteros, Sara es_ES
dc.contributor.author Arqués Sanz, Antonio es_ES
dc.date.accessioned 2021-01-26T04:32:22Z
dc.date.available 2021-01-26T04:32:22Z
dc.date.issued 2019-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159850
dc.description.abstract [EN] The photodegradation of an aqueous solution of diclofenac (DCF) has been attempted in the presence of hydrogen peroxide and organic/inorganic hybrid magnetic materials under simulated and real solar light. The hybrid magnetic materials have been prepared via coprecipitation synthesis starting from iron(II) and iron(III) inorganic salts in the presence of bioderived organic products (i.e., chitosan or bio-based substances isolated from commercially available composted urban biowastes) acting as stabilizers of the iron-containing phase. In addition to the as prepared hybrid materials, the corresponding materials obtained after a pyrolytic step at low temperature (550 degrees C) have been tested. The obtained results evidenced the capability of the materials to activate hydrogen peroxide at mild pH promoting DCF (photo) degradation. All the materials feature also as adsorbents since a decrease of DCF is observed also when working in the dark and in the absence of hydrogen peroxide. es_ES
dc.description.sponsorship This work was realized with financial support for academic interchange from the Marie Sklodowska-Curie Research and Innovation Staff Exchange project, funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (Project number: 645,551). Politecnico di Torino is gratefully acknowledged for funding project Starting Grant RTD (project number: 54_RSG17NIR01). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bio-based substances es_ES
dc.subject Biomasses valorization es_ES
dc.subject Chitosan es_ES
dc.subject Magnetic materials es_ES
dc.subject Photocatalysis es_ES
dc.subject Wastewater treatments es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano9081091 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645551/EU/Enhancing water quality by developing novel materials for organic pollutant removal in tertiary water treatments/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/POLITO//54_RSG17NIR01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Nisticò, R.; Bianco Prevot, A.; Magnacca, G.; Canone, L.; García-Ballesteros, S.; Arqués Sanz, A. (2019). Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water. Nanomaterials. 9(8):1-14. https://doi.org/10.3390/nano9081091 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano9081091 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 31366049 es_ES
dc.identifier.pmcid PMC6722719 es_ES
dc.relation.pasarela S\394940 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Politecnico di Torino es_ES
dc.description.references Applying the Circular Economy Lens to Waterhttp://circulatenews.org/2017/01/applying-the-circular-economy-lens-to-water/ es_ES
dc.description.references Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3-27. doi:10.1016/j.watres.2014.08.053 es_ES
dc.description.references Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing - Process Intensification, 109, 178-189. doi:10.1016/j.cep.2016.08.016 es_ES
dc.description.references Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51-59. doi:10.1016/s0920-5861(99)00102-9 es_ES
dc.description.references Oturan, M. A., & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577-2641. doi:10.1080/10643389.2013.829765 es_ES
dc.description.references Ghatak, H. R. (2014). Advanced Oxidation Processes for the Treatment of Biorecalcitrant Organics in Wastewater. Critical Reviews in Environmental Science and Technology, 44(11), 1167-1219. doi:10.1080/10643389.2013.763581 es_ES
dc.description.references Richardson, S. D., & Ternes, T. A. (2017). Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 90(1), 398-428. doi:10.1021/acs.analchem.7b04577 es_ES
dc.description.references Minella, M., Marchetti, G., De Laurentiis, E., Malandrino, M., Maurino, V., Minero, C., … Hanna, K. (2014). Photo-Fenton oxidation of phenol with magnetite as iron source. Applied Catalysis B: Environmental, 154-155, 102-109. doi:10.1016/j.apcatb.2014.02.006 es_ES
dc.description.references Nadejde, C., Neamtu, M., Hodoroaba, V.-D., Schneider, R. J., Paul, A., Ababei, G., & Panne, U. (2015). Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants. Journal of Nanoparticle Research, 17(12). doi:10.1007/s11051-015-3290-0 es_ES
dc.description.references Nadejde, C., Neamtu, M., Hodoroaba, V.-D., Schneider, R. J., Paul, A., Ababei, G., & Panne, U. (2015). Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application. Applied Catalysis B: Environmental, 176-177, 667-677. doi:10.1016/j.apcatb.2015.04.050 es_ES
dc.description.references Munoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2015). Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 176-177, 249-265. doi:10.1016/j.apcatb.2015.04.003 es_ES
dc.description.references Palma, D., Bianco Prevot, A., Celi, L., Martin, M., Fabbri, D., Magnacca, G., … Nisticò, R. (2018). Isolation, Characterization, and Environmental Application of Bio-Based Materials as Auxiliaries in Photocatalytic Processes. Catalysts, 8(5), 197. doi:10.3390/catal8050197 es_ES
dc.description.references Franzoso, F., Nisticò, R., Cesano, F., Corazzari, I., Turci, F., Scarano, D., … Mártire, D. O. (2017). Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal, 310, 307-316. doi:10.1016/j.cej.2016.10.120 es_ES
dc.description.references Nisticò, R., Cesano, F., Franzoso, F., Magnacca, G., Scarano, D., Funes, I. G., … Parolo, M. E. (2018). From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons. Chemosphere, 202, 686-693. doi:10.1016/j.chemosphere.2018.03.153 es_ES
dc.description.references Nisticò, R., Franzoso, F., Cesano, F., Scarano, D., Magnacca, G., Parolo, M. E., & Carlos, L. (2016). Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustainable Chemistry & Engineering, 5(1), 793-801. doi:10.1021/acssuschemeng.6b02126 es_ES
dc.description.references Nisticò, R., Celi, L. R., Bianco Prevot, A., Carlos, L., Magnacca, G., Zanzo, E., & Martin, M. (2018). Sustainable magnet-responsive nanomaterials for the removal of arsenic from contaminated water. Journal of Hazardous Materials, 342, 260-269. doi:10.1016/j.jhazmat.2017.08.034 es_ES
dc.description.references Standard Methods Online Standard Methods for the Examination of Water and Wastewaterhttp://standardmethods.org/ es_ES
dc.description.references Amat, A. ., Arques, A., Beneyto, H., Garcı́a, A., Miranda, M. A., & Seguı́, S. (2003). Ozonisation coupled with biological degradation for treatment of phenolic pollutants: a mechanistically based study. Chemosphere, 53(1), 79-86. doi:10.1016/s0045-6535(03)00450-8 es_ES
dc.description.references Pérez-Estrada, L. A., Malato, S., Gernjak, W., Agüera, A., Thurman, E. M., Ferrer, I., & Fernández-Alba, A. R. (2005). Photo-Fenton Degradation of Diclofenac:  Identification of Main Intermediates and Degradation Pathway. Environmental Science & Technology, 39(21), 8300-8306. doi:10.1021/es050794n es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem