Mostrar el registro sencillo del ítem
dc.contributor.author | Nisticò, Roberto | es_ES |
dc.contributor.author | Bianco Prevot, Alessandra | es_ES |
dc.contributor.author | Magnacca, Giuliana | es_ES |
dc.contributor.author | Canone, Lorenzo | es_ES |
dc.contributor.author | García-Ballesteros, Sara | es_ES |
dc.contributor.author | Arqués Sanz, Antonio | es_ES |
dc.date.accessioned | 2021-01-26T04:32:22Z | |
dc.date.available | 2021-01-26T04:32:22Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159850 | |
dc.description.abstract | [EN] The photodegradation of an aqueous solution of diclofenac (DCF) has been attempted in the presence of hydrogen peroxide and organic/inorganic hybrid magnetic materials under simulated and real solar light. The hybrid magnetic materials have been prepared via coprecipitation synthesis starting from iron(II) and iron(III) inorganic salts in the presence of bioderived organic products (i.e., chitosan or bio-based substances isolated from commercially available composted urban biowastes) acting as stabilizers of the iron-containing phase. In addition to the as prepared hybrid materials, the corresponding materials obtained after a pyrolytic step at low temperature (550 degrees C) have been tested. The obtained results evidenced the capability of the materials to activate hydrogen peroxide at mild pH promoting DCF (photo) degradation. All the materials feature also as adsorbents since a decrease of DCF is observed also when working in the dark and in the absence of hydrogen peroxide. | es_ES |
dc.description.sponsorship | This work was realized with financial support for academic interchange from the Marie Sklodowska-Curie Research and Innovation Staff Exchange project, funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (Project number: 645,551). Politecnico di Torino is gratefully acknowledged for funding project Starting Grant RTD (project number: 54_RSG17NIR01). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Bio-based substances | es_ES |
dc.subject | Biomasses valorization | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject | Magnetic materials | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | Wastewater treatments | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano9081091 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/645551/EU/Enhancing water quality by developing novel materials for organic pollutant removal in tertiary water treatments/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/POLITO//54_RSG17NIR01/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Nisticò, R.; Bianco Prevot, A.; Magnacca, G.; Canone, L.; García-Ballesteros, S.; Arqués Sanz, A. (2019). Sustainable Magnetic Materials (from Chitosan and Municipal Biowaste) for the Removal of Diclofenac from Water. Nanomaterials. 9(8):1-14. https://doi.org/10.3390/nano9081091 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano9081091 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.identifier.pmid | 31366049 | es_ES |
dc.identifier.pmcid | PMC6722719 | es_ES |
dc.relation.pasarela | S\394940 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Politecnico di Torino | es_ES |
dc.description.references | Applying the Circular Economy Lens to Waterhttp://circulatenews.org/2017/01/applying-the-circular-economy-lens-to-water/ | es_ES |
dc.description.references | Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3-27. doi:10.1016/j.watres.2014.08.053 | es_ES |
dc.description.references | Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing - Process Intensification, 109, 178-189. doi:10.1016/j.cep.2016.08.016 | es_ES |
dc.description.references | Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51-59. doi:10.1016/s0920-5861(99)00102-9 | es_ES |
dc.description.references | Oturan, M. A., & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577-2641. doi:10.1080/10643389.2013.829765 | es_ES |
dc.description.references | Ghatak, H. R. (2014). Advanced Oxidation Processes for the Treatment of Biorecalcitrant Organics in Wastewater. Critical Reviews in Environmental Science and Technology, 44(11), 1167-1219. doi:10.1080/10643389.2013.763581 | es_ES |
dc.description.references | Richardson, S. D., & Ternes, T. A. (2017). Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 90(1), 398-428. doi:10.1021/acs.analchem.7b04577 | es_ES |
dc.description.references | Minella, M., Marchetti, G., De Laurentiis, E., Malandrino, M., Maurino, V., Minero, C., … Hanna, K. (2014). Photo-Fenton oxidation of phenol with magnetite as iron source. Applied Catalysis B: Environmental, 154-155, 102-109. doi:10.1016/j.apcatb.2014.02.006 | es_ES |
dc.description.references | Nadejde, C., Neamtu, M., Hodoroaba, V.-D., Schneider, R. J., Paul, A., Ababei, G., & Panne, U. (2015). Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants. Journal of Nanoparticle Research, 17(12). doi:10.1007/s11051-015-3290-0 | es_ES |
dc.description.references | Nadejde, C., Neamtu, M., Hodoroaba, V.-D., Schneider, R. J., Paul, A., Ababei, G., & Panne, U. (2015). Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application. Applied Catalysis B: Environmental, 176-177, 667-677. doi:10.1016/j.apcatb.2015.04.050 | es_ES |
dc.description.references | Munoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2015). Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Applied Catalysis B: Environmental, 176-177, 249-265. doi:10.1016/j.apcatb.2015.04.003 | es_ES |
dc.description.references | Palma, D., Bianco Prevot, A., Celi, L., Martin, M., Fabbri, D., Magnacca, G., … Nisticò, R. (2018). Isolation, Characterization, and Environmental Application of Bio-Based Materials as Auxiliaries in Photocatalytic Processes. Catalysts, 8(5), 197. doi:10.3390/catal8050197 | es_ES |
dc.description.references | Franzoso, F., Nisticò, R., Cesano, F., Corazzari, I., Turci, F., Scarano, D., … Mártire, D. O. (2017). Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal, 310, 307-316. doi:10.1016/j.cej.2016.10.120 | es_ES |
dc.description.references | Nisticò, R., Cesano, F., Franzoso, F., Magnacca, G., Scarano, D., Funes, I. G., … Parolo, M. E. (2018). From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons. Chemosphere, 202, 686-693. doi:10.1016/j.chemosphere.2018.03.153 | es_ES |
dc.description.references | Nisticò, R., Franzoso, F., Cesano, F., Scarano, D., Magnacca, G., Parolo, M. E., & Carlos, L. (2016). Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustainable Chemistry & Engineering, 5(1), 793-801. doi:10.1021/acssuschemeng.6b02126 | es_ES |
dc.description.references | Nisticò, R., Celi, L. R., Bianco Prevot, A., Carlos, L., Magnacca, G., Zanzo, E., & Martin, M. (2018). Sustainable magnet-responsive nanomaterials for the removal of arsenic from contaminated water. Journal of Hazardous Materials, 342, 260-269. doi:10.1016/j.jhazmat.2017.08.034 | es_ES |
dc.description.references | Standard Methods Online Standard Methods for the Examination of Water and Wastewaterhttp://standardmethods.org/ | es_ES |
dc.description.references | Amat, A. ., Arques, A., Beneyto, H., Garcı́a, A., Miranda, M. A., & Seguı́, S. (2003). Ozonisation coupled with biological degradation for treatment of phenolic pollutants: a mechanistically based study. Chemosphere, 53(1), 79-86. doi:10.1016/s0045-6535(03)00450-8 | es_ES |
dc.description.references | Pérez-Estrada, L. A., Malato, S., Gernjak, W., Agüera, A., Thurman, E. M., Ferrer, I., & Fernández-Alba, A. R. (2005). Photo-Fenton Degradation of Diclofenac: Identification of Main Intermediates and Degradation Pathway. Environmental Science & Technology, 39(21), 8300-8306. doi:10.1021/es050794n | es_ES |