- -

Wild edible fool's watercress, a potential crop with high nutraceutical properties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Wild edible fool's watercress, a potential crop with high nutraceutical properties

Show full item record

Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Adalid-Martinez, AM.; López-Gresa, MP.; Fita, A. (2019). Wild edible fool's watercress, a potential crop with high nutraceutical properties. PeerJ. 7:1-18. https://doi.org/10.7717/peerj.6296

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159858

Files in this item

Item Metadata

Title: Wild edible fool's watercress, a potential crop with high nutraceutical properties
Author: Guijarro-Real, Carla Prohens Tomás, Jaime Rodríguez Burruezo, Adrián Adalid-Martinez, Ana Maria López-Gresa, María Pilar Fita, Ana
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Issued date:
Abstract:
[EN] Background. Fool's watercress (Apium nodiflorum) is an edible vegetable with potential as a new crop. However, little information is available regarding the antioxidant properties of the plant and the individual ...[+]
Subjects: Antioxidants , Apium nodiflorum , DPPH , New crops , Total phenolics , Quercetin , Wild edible plants , Flavonoids
Copyrigths: Reconocimiento (by)
Source:
PeerJ. (eissn: 2167-8359 )
DOI: 10.7717/peerj.6296
Publisher:
PeerJ
Publisher version: https://doi.org/10.7717/peerj.6296
Project ID:
info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/
Thanks:
Carla Guijarro-Real is supported by the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) with a predoctoral FPU grant (FPU14-06798). There was no additional external funding received for this study. The funders ...[+]
Type: Artículo

References

Albano, S. M., & Miguel, M. G. (2011). Biological activities of extracts of plants grown in Portugal. Industrial Crops and Products, 33(2), 338-343. doi:10.1016/j.indcrop.2010.11.012

Bae, H., Jayaprakasha, G. K., Jifon, J., & Patil, B. S. (2012). Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chemistry, 130(3), 751-758. doi:10.1016/j.foodchem.2011.07.041

Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Bioactive Components from Leaf Vegetable Products. Studies in Natural Products Chemistry, 321-346. doi:10.1016/b978-0-444-63294-4.00011-5 [+]
Albano, S. M., & Miguel, M. G. (2011). Biological activities of extracts of plants grown in Portugal. Industrial Crops and Products, 33(2), 338-343. doi:10.1016/j.indcrop.2010.11.012

Bae, H., Jayaprakasha, G. K., Jifon, J., & Patil, B. S. (2012). Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chemistry, 130(3), 751-758. doi:10.1016/j.foodchem.2011.07.041

Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Bioactive Components from Leaf Vegetable Products. Studies in Natural Products Chemistry, 321-346. doi:10.1016/b978-0-444-63294-4.00011-5

Barros, L., Dueñas, M., Dias, M. I., Sousa, M. J., Santos-Buelga, C., & Ferreira, I. C. F. R. (2012). Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry, 132(2), 841-848. doi:10.1016/j.foodchem.2011.11.048

Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry, 42(6), e12675. doi:10.1111/jfbc.12675

Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2010). Phenolic Compounds in Brassica Vegetables. Molecules, 16(1), 251-280. doi:10.3390/molecules16010251

Chebrolu, K. K., Jayaprakasha, G. K., Yoo, K. S., Jifon, J. L., & Patil, B. S. (2012). An improved sample preparation method for quantification of ascorbic acid and dehydroascorbic acid by HPLC. LWT, 47(2), 443-449. doi:10.1016/j.lwt.2012.02.004

Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148-173. doi:10.1111/j.1541-4337.2011.00173.x

Crozier, A., Lean, M. E. J., McDonald, M. S., & Black, C. (1997). Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. Journal of Agricultural and Food Chemistry, 45(3), 590-595. doi:10.1021/jf960339y

Egea-Gilabert, C., Niñirola, D., Conesa, E., Candela, M. E., & Fernández, J. A. (2013). Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Scientia Horticulturae, 152, 35-43. doi:10.1016/j.scienta.2013.01.018

El-Zaeddi, H., Calín-Sánchez, Á., Nowicka, P., Martínez-Tomé, J., Noguera-Artiaga, L., Burló, F., … Carbonell-Barrachina, Á. A. (2017). Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 226, 179-186. doi:10.1016/j.foodchem.2017.01.067

Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., & Stagnari, F. (2015). Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187, 93-101. doi:10.1016/j.scienta.2015.02.036

García-Herrera, P., Sánchez-Mata, M. C., Cámara, M., Fernández-Ruiz, V., Díez-Marqués, C., Molina, M., & Tardío, J. (2014). Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. Journal of Food Composition and Analysis, 34(2), 163-170. doi:10.1016/j.jfca.2014.02.009

Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036

Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050

Hossain, M. B., Patras, A., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2011). Application of principal component and hierarchical cluster analysis to classify different spices based on in vitro antioxidant activity and individual polyphenolic antioxidant compounds. Journal of Functional Foods, 3(3), 179-189. doi:10.1016/j.jff.2011.03.010

Justesen, U. (2000). Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. Journal of Chromatography A, 902(2), 369-379. doi:10.1016/s0021-9673(00)00861-x

Justesen, U., & Knuthsen, P. (2001). Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chemistry, 73(2), 245-250. doi:10.1016/s0308-8146(01)00114-5

Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A, 799(1-2), 101-110. doi:10.1016/s0021-9673(97)01061-3

Kaulmann, A., Jonville, M.-C., Schneider, Y.-J., Hoffmann, L., & Bohn, T. (2014). Carotenoids, polyphenols and micronutrient profiles of Brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity. Food Chemistry, 155, 240-250. doi:10.1016/j.foodchem.2014.01.070

Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464

Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(2-3), 165-173. doi:10.1016/j.fbp.2008.12.001

Mattila, P., & Kumpulainen, J. (2002). Determination of Free and Total Phenolic Acids in Plant-Derived Foods by HPLC with Diode-Array Detection. Journal of Agricultural and Food Chemistry, 50(13), 3660-3667. doi:10.1021/jf020028p

Maxia, A., Falconieri, D., Piras, A., Porcedda, S., Marongiu, B., Frau, M. A., … Salgueiro, L. (2012). Chemical Composition and Antifungal Activity of Essential Oils and Supercritical CO2 Extracts of Apium nodiflorum (L.) Lag. Mycopathologia, 174(1), 61-67. doi:10.1007/s11046-011-9519-2

Menghini, L., Leporini, L., Tirillini, B., Epifano, F., & Genovese, S. (2010). Chemical Composition and Inhibitory Activity Against Helicobacter pylori of the Essential Oil of Apium nodiflorum (Apiaceae). Journal of Medicinal Food, 13(1), 228-230. doi:10.1089/jmf.2009.0010

Molina, M., Pardo-de-Santayana, M., & Tardío, J. (2016). Natural Production and Cultivation of Mediterranean Wild Edibles. Mediterranean Wild Edible Plants, 81-107. doi:10.1007/978-1-4939-3329-7_5

Morales, P., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Molina, M., & Ferreira, I. C. F. R. (2011). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 59(5), 851-863. doi:10.1007/s10722-011-9726-1

Morales, P., Ferreira, I. C. F. R., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Fernández-Ruiz, V., … Tardío, J. (2014). Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 55(1), 389-396. doi:10.1016/j.lwt.2013.08.017

Motamed, S. M., & Naghibi, F. (2010). Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran. Food Chemistry, 119(4), 1637-1642. doi:10.1016/j.foodchem.2009.09.057

Pápay, Z. E., Kállai-Szabó, N., Ludányi, K., Klebovich, I., & Antal, I. (2016). Development of oral site-specific pellets containing flavonoid extract with antioxidant activity. European Journal of Pharmaceutical Sciences, 95, 161-169. doi:10.1016/j.ejps.2016.10.029

Plazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221

Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95-105. doi:10.1016/j.canlet.2016.03.042

Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956. doi:10.1016/0891-5849(95)02227-9

Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 820-897. doi:10.1016/j.jff.2015.06.018

Salami, M., Rahimmalek, M., & Ehtemam, M. H. (2016). Inhibitory effect of different fennel ( Foeniculum vulgare ) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chemistry, 213, 196-205. doi:10.1016/j.foodchem.2016.06.070

Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A., & Merah, O. (2017). The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial Crops and Products, 109, 661-671. doi:10.1016/j.indcrop.2017.09.027

Sharmila, G., Athirai, T., Kiruthiga, B., Senthilkumar, K., Elumalai, P., Arunkumar, R., & Arunakaran, J. (2013). Chemopreventive Effect of Quercetin in MNU and Testosterone Induced Prostate Cancer of Sprague-Dawley Rats. Nutrition and Cancer, 66(1), 38-46. doi:10.1080/01635581.2014.847967

Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841

Tang, E. L., Rajarajeswaran, J., Fung, S., & Kanthimathi, M. (2015). Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. Journal of the Science of Food and Agriculture, 95(13), 2763-2771. doi:10.1002/jsfa.7078

Tardío, J., Sánchez-Mata, M. de C., Morales, R., Molina, M., García-Herrera, P., Morales, P., … Boussalah, N. (2016). Ethnobotanical and Food Composition Monographs of Selected Mediterranean Wild Edible Plants. Mediterranean Wild Edible Plants, 273-470. doi:10.1007/978-1-4939-3329-7_13

Van Bree, I., Baetens, J. M., Samapundo, S., Devlieghere, F., Laleman, R., Vandekinderen, I., … De Meulenaer, B. (2012). Modelling the degradation kinetics of vitamin C in fruit juice in relation to the initial headspace oxygen concentration. Food Chemistry, 134(1), 207-214. doi:10.1016/j.foodchem.2012.02.096

Viña, S. Z., & Chaves, A. R. (2007). Respiratory activity and phenolic compounds in pre-cut celery. Food Chemistry, 100(4), 1654-1660. doi:10.1016/j.foodchem.2005.12.060

Yao, Y., & Ren, G. (2011). Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT - Food Science and Technology, 44(1), 181-185. doi:10.1016/j.lwt.2010.07.001

Yao, Y., Sang, W., Zhou, M., & Ren, G. (2010). Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. Journal of Food Science, 75(1), C9-C13. doi:10.1111/j.1750-3841.2009.01392.x

Yıldız, L., Başkan, K. S., Tütem, E., & Apak, R. (2008). Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta, 77(1), 304-313. doi:10.1016/j.talanta.2008.06.028

Załuski, D., Cieśla, Ł., & Janeczko, Z. (2015). The Structure–Activity Relationships of Plant Secondary Metabolites with Antimicrobial, Free Radical Scavenging and Inhibitory Activity toward Selected Enzymes. Studies in Natural Products Chemistry, 217-249. doi:10.1016/b978-0-444-63473-3.00007-1

Zhou, X., Wang, F., Zhou, R., Song, X., & Xie, M. (2017). Apigenin: A current review on its beneficial biological activities. Journal of Food Biochemistry, 41(4), e12376. doi:10.1111/jfbc.12376

Zhou, Y., Zheng, J., Li, Y., Xu, D.-P., Li, S., Chen, Y.-M., & Li, H.-B. (2016). Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients, 8(8), 515. doi:10.3390/nu8080515

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record