- -

Wild edible fool's watercress, a potential crop with high nutraceutical properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wild edible fool's watercress, a potential crop with high nutraceutical properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guijarro-Real, Carla es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.contributor.author Adalid-Martinez, Ana Maria es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Fita, Ana es_ES
dc.date.accessioned 2021-01-26T04:32:34Z
dc.date.available 2021-01-26T04:32:34Z
dc.date.issued 2019-02-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159858
dc.description.abstract [EN] Background. Fool's watercress (Apium nodiflorum) is an edible vegetable with potential as a new crop. However, little information is available regarding the antioxidant properties of the plant and the individual phenolics accounting for this capacity are unknown. Methods. The antioxidant properties of twenty-five wild populations were analysed and individual phenolics present in the species reported and compared with celery and parsley. The antioxidant activity was measured as the 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical scavenging capacity, and the total phenolics content (TPC) via the Folin-Ciocalteu procedure. The individual phenolics constituents were determined via high performance liquid chromatography (HPLC) as aglycones. Results. The average DPPH and TPC of fool's watercress were 28.1 mg Trolox g-1 DW and 22.3 mg of chlorogenic acid equivalents g-1 DW, respectively, much higher than those of celery and parsley. Significant differences for both DPPH and TPC, which may be explained by either genotype or environmental factors, were detected among groups established according to geographical origin. Quercetin was identified as the major phenolic present in the leaves of the species, unlike parsley and celery, in which high amounts of apigenin and luteolin were determined. Quercetin represented 61.6% of the phenolics targeted in fool's watercress, followed by caffeic acid derivatives as main hydroxycinnamic acids. Discussion. The study reports the high antioxidant properties of fool's watercress based on a large number of populations. Results suggest that quercetin accounts for an important share of the antioxidant capacity of this potential new crop. The study also provides a basis for future breeding programs, suggesting that selection by geographical locations may result in differences in the antioxidant properties. es_ES
dc.description.sponsorship Carla Guijarro-Real is supported by the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) with a predoctoral FPU grant (FPU14-06798). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher PeerJ es_ES
dc.relation.ispartof PeerJ es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Antioxidants es_ES
dc.subject Apium nodiflorum es_ES
dc.subject DPPH es_ES
dc.subject New crops es_ES
dc.subject Total phenolics es_ES
dc.subject Quercetin es_ES
dc.subject Wild edible plants es_ES
dc.subject Flavonoids es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Wild edible fool's watercress, a potential crop with high nutraceutical properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.7717/peerj.6296 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Adalid-Martinez, AM.; López-Gresa, MP.; Fita, A. (2019). Wild edible fool's watercress, a potential crop with high nutraceutical properties. PeerJ. 7:1-18. https://doi.org/10.7717/peerj.6296 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.7717/peerj.6296 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.eissn 2167-8359 es_ES
dc.identifier.pmid 30723618 es_ES
dc.identifier.pmcid PMC6361001 es_ES
dc.relation.pasarela S\377266 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Albano, S. M., & Miguel, M. G. (2011). Biological activities of extracts of plants grown in Portugal. Industrial Crops and Products, 33(2), 338-343. doi:10.1016/j.indcrop.2010.11.012 es_ES
dc.description.references Bae, H., Jayaprakasha, G. K., Jifon, J., & Patil, B. S. (2012). Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chemistry, 130(3), 751-758. doi:10.1016/j.foodchem.2011.07.041 es_ES
dc.description.references Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Bioactive Components from Leaf Vegetable Products. Studies in Natural Products Chemistry, 321-346. doi:10.1016/b978-0-444-63294-4.00011-5 es_ES
dc.description.references Barros, L., Dueñas, M., Dias, M. I., Sousa, M. J., Santos-Buelga, C., & Ferreira, I. C. F. R. (2012). Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry, 132(2), 841-848. doi:10.1016/j.foodchem.2011.11.048 es_ES
dc.description.references Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry, 42(6), e12675. doi:10.1111/jfbc.12675 es_ES
dc.description.references Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2010). Phenolic Compounds in Brassica Vegetables. Molecules, 16(1), 251-280. doi:10.3390/molecules16010251 es_ES
dc.description.references Chebrolu, K. K., Jayaprakasha, G. K., Yoo, K. S., Jifon, J. L., & Patil, B. S. (2012). An improved sample preparation method for quantification of ascorbic acid and dehydroascorbic acid by HPLC. LWT, 47(2), 443-449. doi:10.1016/j.lwt.2012.02.004 es_ES
dc.description.references Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148-173. doi:10.1111/j.1541-4337.2011.00173.x es_ES
dc.description.references Crozier, A., Lean, M. E. J., McDonald, M. S., & Black, C. (1997). Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. Journal of Agricultural and Food Chemistry, 45(3), 590-595. doi:10.1021/jf960339y es_ES
dc.description.references Egea-Gilabert, C., Niñirola, D., Conesa, E., Candela, M. E., & Fernández, J. A. (2013). Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Scientia Horticulturae, 152, 35-43. doi:10.1016/j.scienta.2013.01.018 es_ES
dc.description.references El-Zaeddi, H., Calín-Sánchez, Á., Nowicka, P., Martínez-Tomé, J., Noguera-Artiaga, L., Burló, F., … Carbonell-Barrachina, Á. A. (2017). Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 226, 179-186. doi:10.1016/j.foodchem.2017.01.067 es_ES
dc.description.references Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., & Stagnari, F. (2015). Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187, 93-101. doi:10.1016/j.scienta.2015.02.036 es_ES
dc.description.references García-Herrera, P., Sánchez-Mata, M. C., Cámara, M., Fernández-Ruiz, V., Díez-Marqués, C., Molina, M., & Tardío, J. (2014). Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. Journal of Food Composition and Analysis, 34(2), 163-170. doi:10.1016/j.jfca.2014.02.009 es_ES
dc.description.references Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036 es_ES
dc.description.references Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050 es_ES
dc.description.references Hossain, M. B., Patras, A., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2011). Application of principal component and hierarchical cluster analysis to classify different spices based on in vitro antioxidant activity and individual polyphenolic antioxidant compounds. Journal of Functional Foods, 3(3), 179-189. doi:10.1016/j.jff.2011.03.010 es_ES
dc.description.references Justesen, U. (2000). Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. Journal of Chromatography A, 902(2), 369-379. doi:10.1016/s0021-9673(00)00861-x es_ES
dc.description.references Justesen, U., & Knuthsen, P. (2001). Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chemistry, 73(2), 245-250. doi:10.1016/s0308-8146(01)00114-5 es_ES
dc.description.references Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A, 799(1-2), 101-110. doi:10.1016/s0021-9673(97)01061-3 es_ES
dc.description.references Kaulmann, A., Jonville, M.-C., Schneider, Y.-J., Hoffmann, L., & Bohn, T. (2014). Carotenoids, polyphenols and micronutrient profiles of Brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity. Food Chemistry, 155, 240-250. doi:10.1016/j.foodchem.2014.01.070 es_ES
dc.description.references Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464 es_ES
dc.description.references Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(2-3), 165-173. doi:10.1016/j.fbp.2008.12.001 es_ES
dc.description.references Mattila, P., & Kumpulainen, J. (2002). Determination of Free and Total Phenolic Acids in Plant-Derived Foods by HPLC with Diode-Array Detection. Journal of Agricultural and Food Chemistry, 50(13), 3660-3667. doi:10.1021/jf020028p es_ES
dc.description.references Maxia, A., Falconieri, D., Piras, A., Porcedda, S., Marongiu, B., Frau, M. A., … Salgueiro, L. (2012). Chemical Composition and Antifungal Activity of Essential Oils and Supercritical CO2 Extracts of Apium nodiflorum (L.) Lag. Mycopathologia, 174(1), 61-67. doi:10.1007/s11046-011-9519-2 es_ES
dc.description.references Menghini, L., Leporini, L., Tirillini, B., Epifano, F., & Genovese, S. (2010). Chemical Composition and Inhibitory Activity Against Helicobacter pylori of the Essential Oil of Apium nodiflorum (Apiaceae). Journal of Medicinal Food, 13(1), 228-230. doi:10.1089/jmf.2009.0010 es_ES
dc.description.references Molina, M., Pardo-de-Santayana, M., & Tardío, J. (2016). Natural Production and Cultivation of Mediterranean Wild Edibles. Mediterranean Wild Edible Plants, 81-107. doi:10.1007/978-1-4939-3329-7_5 es_ES
dc.description.references Morales, P., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Molina, M., & Ferreira, I. C. F. R. (2011). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 59(5), 851-863. doi:10.1007/s10722-011-9726-1 es_ES
dc.description.references Morales, P., Ferreira, I. C. F. R., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Fernández-Ruiz, V., … Tardío, J. (2014). Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 55(1), 389-396. doi:10.1016/j.lwt.2013.08.017 es_ES
dc.description.references Motamed, S. M., & Naghibi, F. (2010). Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran. Food Chemistry, 119(4), 1637-1642. doi:10.1016/j.foodchem.2009.09.057 es_ES
dc.description.references Pápay, Z. E., Kállai-Szabó, N., Ludányi, K., Klebovich, I., & Antal, I. (2016). Development of oral site-specific pellets containing flavonoid extract with antioxidant activity. European Journal of Pharmaceutical Sciences, 95, 161-169. doi:10.1016/j.ejps.2016.10.029 es_ES
dc.description.references Plazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221 es_ES
dc.description.references Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95-105. doi:10.1016/j.canlet.2016.03.042 es_ES
dc.description.references Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956. doi:10.1016/0891-5849(95)02227-9 es_ES
dc.description.references Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 820-897. doi:10.1016/j.jff.2015.06.018 es_ES
dc.description.references Salami, M., Rahimmalek, M., & Ehtemam, M. H. (2016). Inhibitory effect of different fennel ( Foeniculum vulgare ) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chemistry, 213, 196-205. doi:10.1016/j.foodchem.2016.06.070 es_ES
dc.description.references Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A., & Merah, O. (2017). The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial Crops and Products, 109, 661-671. doi:10.1016/j.indcrop.2017.09.027 es_ES
dc.description.references Sharmila, G., Athirai, T., Kiruthiga, B., Senthilkumar, K., Elumalai, P., Arunkumar, R., & Arunakaran, J. (2013). Chemopreventive Effect of Quercetin in MNU and Testosterone Induced Prostate Cancer of Sprague-Dawley Rats. Nutrition and Cancer, 66(1), 38-46. doi:10.1080/01635581.2014.847967 es_ES
dc.description.references Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841 es_ES
dc.description.references Tang, E. L., Rajarajeswaran, J., Fung, S., & Kanthimathi, M. (2015). Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. Journal of the Science of Food and Agriculture, 95(13), 2763-2771. doi:10.1002/jsfa.7078 es_ES
dc.description.references Tardío, J., Sánchez-Mata, M. de C., Morales, R., Molina, M., García-Herrera, P., Morales, P., … Boussalah, N. (2016). Ethnobotanical and Food Composition Monographs of Selected Mediterranean Wild Edible Plants. Mediterranean Wild Edible Plants, 273-470. doi:10.1007/978-1-4939-3329-7_13 es_ES
dc.description.references Van Bree, I., Baetens, J. M., Samapundo, S., Devlieghere, F., Laleman, R., Vandekinderen, I., … De Meulenaer, B. (2012). Modelling the degradation kinetics of vitamin C in fruit juice in relation to the initial headspace oxygen concentration. Food Chemistry, 134(1), 207-214. doi:10.1016/j.foodchem.2012.02.096 es_ES
dc.description.references Viña, S. Z., & Chaves, A. R. (2007). Respiratory activity and phenolic compounds in pre-cut celery. Food Chemistry, 100(4), 1654-1660. doi:10.1016/j.foodchem.2005.12.060 es_ES
dc.description.references Yao, Y., & Ren, G. (2011). Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT - Food Science and Technology, 44(1), 181-185. doi:10.1016/j.lwt.2010.07.001 es_ES
dc.description.references Yao, Y., Sang, W., Zhou, M., & Ren, G. (2010). Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. Journal of Food Science, 75(1), C9-C13. doi:10.1111/j.1750-3841.2009.01392.x es_ES
dc.description.references Yıldız, L., Başkan, K. S., Tütem, E., & Apak, R. (2008). Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta, 77(1), 304-313. doi:10.1016/j.talanta.2008.06.028 es_ES
dc.description.references Załuski, D., Cieśla, Ł., & Janeczko, Z. (2015). The Structure–Activity Relationships of Plant Secondary Metabolites with Antimicrobial, Free Radical Scavenging and Inhibitory Activity toward Selected Enzymes. Studies in Natural Products Chemistry, 217-249. doi:10.1016/b978-0-444-63473-3.00007-1 es_ES
dc.description.references Zhou, X., Wang, F., Zhou, R., Song, X., & Xie, M. (2017). Apigenin: A current review on its beneficial biological activities. Journal of Food Biochemistry, 41(4), e12376. doi:10.1111/jfbc.12376 es_ES
dc.description.references Zhou, Y., Zheng, J., Li, Y., Xu, D.-P., Li, S., Chen, Y.-M., & Li, H.-B. (2016). Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients, 8(8), 515. doi:10.3390/nu8080515 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem