Mostrar el registro sencillo del ítem
dc.contributor.author | Guijarro-Real, Carla | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Rodríguez Burruezo, Adrián | es_ES |
dc.contributor.author | Adalid-Martinez, Ana Maria | es_ES |
dc.contributor.author | López-Gresa, María Pilar | es_ES |
dc.contributor.author | Fita, Ana | es_ES |
dc.date.accessioned | 2021-01-26T04:32:34Z | |
dc.date.available | 2021-01-26T04:32:34Z | |
dc.date.issued | 2019-02-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159858 | |
dc.description.abstract | [EN] Background. Fool's watercress (Apium nodiflorum) is an edible vegetable with potential as a new crop. However, little information is available regarding the antioxidant properties of the plant and the individual phenolics accounting for this capacity are unknown. Methods. The antioxidant properties of twenty-five wild populations were analysed and individual phenolics present in the species reported and compared with celery and parsley. The antioxidant activity was measured as the 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical scavenging capacity, and the total phenolics content (TPC) via the Folin-Ciocalteu procedure. The individual phenolics constituents were determined via high performance liquid chromatography (HPLC) as aglycones. Results. The average DPPH and TPC of fool's watercress were 28.1 mg Trolox g-1 DW and 22.3 mg of chlorogenic acid equivalents g-1 DW, respectively, much higher than those of celery and parsley. Significant differences for both DPPH and TPC, which may be explained by either genotype or environmental factors, were detected among groups established according to geographical origin. Quercetin was identified as the major phenolic present in the leaves of the species, unlike parsley and celery, in which high amounts of apigenin and luteolin were determined. Quercetin represented 61.6% of the phenolics targeted in fool's watercress, followed by caffeic acid derivatives as main hydroxycinnamic acids. Discussion. The study reports the high antioxidant properties of fool's watercress based on a large number of populations. Results suggest that quercetin accounts for an important share of the antioxidant capacity of this potential new crop. The study also provides a basis for future breeding programs, suggesting that selection by geographical locations may result in differences in the antioxidant properties. | es_ES |
dc.description.sponsorship | Carla Guijarro-Real is supported by the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) with a predoctoral FPU grant (FPU14-06798). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | PeerJ | es_ES |
dc.relation.ispartof | PeerJ | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Antioxidants | es_ES |
dc.subject | Apium nodiflorum | es_ES |
dc.subject | DPPH | es_ES |
dc.subject | New crops | es_ES |
dc.subject | Total phenolics | es_ES |
dc.subject | Quercetin | es_ES |
dc.subject | Wild edible plants | es_ES |
dc.subject | Flavonoids | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Wild edible fool's watercress, a potential crop with high nutraceutical properties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7717/peerj.6296 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Adalid-Martinez, AM.; López-Gresa, MP.; Fita, A. (2019). Wild edible fool's watercress, a potential crop with high nutraceutical properties. PeerJ. 7:1-18. https://doi.org/10.7717/peerj.6296 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.7717/peerj.6296 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.identifier.eissn | 2167-8359 | es_ES |
dc.identifier.pmid | 30723618 | es_ES |
dc.identifier.pmcid | PMC6361001 | es_ES |
dc.relation.pasarela | S\377266 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Albano, S. M., & Miguel, M. G. (2011). Biological activities of extracts of plants grown in Portugal. Industrial Crops and Products, 33(2), 338-343. doi:10.1016/j.indcrop.2010.11.012 | es_ES |
dc.description.references | Bae, H., Jayaprakasha, G. K., Jifon, J., & Patil, B. S. (2012). Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chemistry, 130(3), 751-758. doi:10.1016/j.foodchem.2011.07.041 | es_ES |
dc.description.references | Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Bioactive Components from Leaf Vegetable Products. Studies in Natural Products Chemistry, 321-346. doi:10.1016/b978-0-444-63294-4.00011-5 | es_ES |
dc.description.references | Barros, L., Dueñas, M., Dias, M. I., Sousa, M. J., Santos-Buelga, C., & Ferreira, I. C. F. R. (2012). Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry, 132(2), 841-848. doi:10.1016/j.foodchem.2011.11.048 | es_ES |
dc.description.references | Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry, 42(6), e12675. doi:10.1111/jfbc.12675 | es_ES |
dc.description.references | Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2010). Phenolic Compounds in Brassica Vegetables. Molecules, 16(1), 251-280. doi:10.3390/molecules16010251 | es_ES |
dc.description.references | Chebrolu, K. K., Jayaprakasha, G. K., Yoo, K. S., Jifon, J. L., & Patil, B. S. (2012). An improved sample preparation method for quantification of ascorbic acid and dehydroascorbic acid by HPLC. LWT, 47(2), 443-449. doi:10.1016/j.lwt.2012.02.004 | es_ES |
dc.description.references | Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148-173. doi:10.1111/j.1541-4337.2011.00173.x | es_ES |
dc.description.references | Crozier, A., Lean, M. E. J., McDonald, M. S., & Black, C. (1997). Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. Journal of Agricultural and Food Chemistry, 45(3), 590-595. doi:10.1021/jf960339y | es_ES |
dc.description.references | Egea-Gilabert, C., Niñirola, D., Conesa, E., Candela, M. E., & Fernández, J. A. (2013). Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Scientia Horticulturae, 152, 35-43. doi:10.1016/j.scienta.2013.01.018 | es_ES |
dc.description.references | El-Zaeddi, H., Calín-Sánchez, Á., Nowicka, P., Martínez-Tomé, J., Noguera-Artiaga, L., Burló, F., … Carbonell-Barrachina, Á. A. (2017). Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 226, 179-186. doi:10.1016/j.foodchem.2017.01.067 | es_ES |
dc.description.references | Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., & Stagnari, F. (2015). Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187, 93-101. doi:10.1016/j.scienta.2015.02.036 | es_ES |
dc.description.references | García-Herrera, P., Sánchez-Mata, M. C., Cámara, M., Fernández-Ruiz, V., Díez-Marqués, C., Molina, M., & Tardío, J. (2014). Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. Journal of Food Composition and Analysis, 34(2), 163-170. doi:10.1016/j.jfca.2014.02.009 | es_ES |
dc.description.references | Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036 | es_ES |
dc.description.references | Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050 | es_ES |
dc.description.references | Hossain, M. B., Patras, A., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2011). Application of principal component and hierarchical cluster analysis to classify different spices based on in vitro antioxidant activity and individual polyphenolic antioxidant compounds. Journal of Functional Foods, 3(3), 179-189. doi:10.1016/j.jff.2011.03.010 | es_ES |
dc.description.references | Justesen, U. (2000). Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. Journal of Chromatography A, 902(2), 369-379. doi:10.1016/s0021-9673(00)00861-x | es_ES |
dc.description.references | Justesen, U., & Knuthsen, P. (2001). Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chemistry, 73(2), 245-250. doi:10.1016/s0308-8146(01)00114-5 | es_ES |
dc.description.references | Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A, 799(1-2), 101-110. doi:10.1016/s0021-9673(97)01061-3 | es_ES |
dc.description.references | Kaulmann, A., Jonville, M.-C., Schneider, Y.-J., Hoffmann, L., & Bohn, T. (2014). Carotenoids, polyphenols and micronutrient profiles of Brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity. Food Chemistry, 155, 240-250. doi:10.1016/j.foodchem.2014.01.070 | es_ES |
dc.description.references | Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464 | es_ES |
dc.description.references | Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(2-3), 165-173. doi:10.1016/j.fbp.2008.12.001 | es_ES |
dc.description.references | Mattila, P., & Kumpulainen, J. (2002). Determination of Free and Total Phenolic Acids in Plant-Derived Foods by HPLC with Diode-Array Detection. Journal of Agricultural and Food Chemistry, 50(13), 3660-3667. doi:10.1021/jf020028p | es_ES |
dc.description.references | Maxia, A., Falconieri, D., Piras, A., Porcedda, S., Marongiu, B., Frau, M. A., … Salgueiro, L. (2012). Chemical Composition and Antifungal Activity of Essential Oils and Supercritical CO2 Extracts of Apium nodiflorum (L.) Lag. Mycopathologia, 174(1), 61-67. doi:10.1007/s11046-011-9519-2 | es_ES |
dc.description.references | Menghini, L., Leporini, L., Tirillini, B., Epifano, F., & Genovese, S. (2010). Chemical Composition and Inhibitory Activity Against Helicobacter pylori of the Essential Oil of Apium nodiflorum (Apiaceae). Journal of Medicinal Food, 13(1), 228-230. doi:10.1089/jmf.2009.0010 | es_ES |
dc.description.references | Molina, M., Pardo-de-Santayana, M., & Tardío, J. (2016). Natural Production and Cultivation of Mediterranean Wild Edibles. Mediterranean Wild Edible Plants, 81-107. doi:10.1007/978-1-4939-3329-7_5 | es_ES |
dc.description.references | Morales, P., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Molina, M., & Ferreira, I. C. F. R. (2011). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 59(5), 851-863. doi:10.1007/s10722-011-9726-1 | es_ES |
dc.description.references | Morales, P., Ferreira, I. C. F. R., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Fernández-Ruiz, V., … Tardío, J. (2014). Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 55(1), 389-396. doi:10.1016/j.lwt.2013.08.017 | es_ES |
dc.description.references | Motamed, S. M., & Naghibi, F. (2010). Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran. Food Chemistry, 119(4), 1637-1642. doi:10.1016/j.foodchem.2009.09.057 | es_ES |
dc.description.references | Pápay, Z. E., Kállai-Szabó, N., Ludányi, K., Klebovich, I., & Antal, I. (2016). Development of oral site-specific pellets containing flavonoid extract with antioxidant activity. European Journal of Pharmaceutical Sciences, 95, 161-169. doi:10.1016/j.ejps.2016.10.029 | es_ES |
dc.description.references | Plazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221 | es_ES |
dc.description.references | Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95-105. doi:10.1016/j.canlet.2016.03.042 | es_ES |
dc.description.references | Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956. doi:10.1016/0891-5849(95)02227-9 | es_ES |
dc.description.references | Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 820-897. doi:10.1016/j.jff.2015.06.018 | es_ES |
dc.description.references | Salami, M., Rahimmalek, M., & Ehtemam, M. H. (2016). Inhibitory effect of different fennel ( Foeniculum vulgare ) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chemistry, 213, 196-205. doi:10.1016/j.foodchem.2016.06.070 | es_ES |
dc.description.references | Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A., & Merah, O. (2017). The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial Crops and Products, 109, 661-671. doi:10.1016/j.indcrop.2017.09.027 | es_ES |
dc.description.references | Sharmila, G., Athirai, T., Kiruthiga, B., Senthilkumar, K., Elumalai, P., Arunkumar, R., & Arunakaran, J. (2013). Chemopreventive Effect of Quercetin in MNU and Testosterone Induced Prostate Cancer of Sprague-Dawley Rats. Nutrition and Cancer, 66(1), 38-46. doi:10.1080/01635581.2014.847967 | es_ES |
dc.description.references | Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841 | es_ES |
dc.description.references | Tang, E. L., Rajarajeswaran, J., Fung, S., & Kanthimathi, M. (2015). Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. Journal of the Science of Food and Agriculture, 95(13), 2763-2771. doi:10.1002/jsfa.7078 | es_ES |
dc.description.references | Tardío, J., Sánchez-Mata, M. de C., Morales, R., Molina, M., García-Herrera, P., Morales, P., … Boussalah, N. (2016). Ethnobotanical and Food Composition Monographs of Selected Mediterranean Wild Edible Plants. Mediterranean Wild Edible Plants, 273-470. doi:10.1007/978-1-4939-3329-7_13 | es_ES |
dc.description.references | Van Bree, I., Baetens, J. M., Samapundo, S., Devlieghere, F., Laleman, R., Vandekinderen, I., … De Meulenaer, B. (2012). Modelling the degradation kinetics of vitamin C in fruit juice in relation to the initial headspace oxygen concentration. Food Chemistry, 134(1), 207-214. doi:10.1016/j.foodchem.2012.02.096 | es_ES |
dc.description.references | Viña, S. Z., & Chaves, A. R. (2007). Respiratory activity and phenolic compounds in pre-cut celery. Food Chemistry, 100(4), 1654-1660. doi:10.1016/j.foodchem.2005.12.060 | es_ES |
dc.description.references | Yao, Y., & Ren, G. (2011). Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT - Food Science and Technology, 44(1), 181-185. doi:10.1016/j.lwt.2010.07.001 | es_ES |
dc.description.references | Yao, Y., Sang, W., Zhou, M., & Ren, G. (2010). Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. Journal of Food Science, 75(1), C9-C13. doi:10.1111/j.1750-3841.2009.01392.x | es_ES |
dc.description.references | Yıldız, L., Başkan, K. S., Tütem, E., & Apak, R. (2008). Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta, 77(1), 304-313. doi:10.1016/j.talanta.2008.06.028 | es_ES |
dc.description.references | Załuski, D., Cieśla, Ł., & Janeczko, Z. (2015). The Structure–Activity Relationships of Plant Secondary Metabolites with Antimicrobial, Free Radical Scavenging and Inhibitory Activity toward Selected Enzymes. Studies in Natural Products Chemistry, 217-249. doi:10.1016/b978-0-444-63473-3.00007-1 | es_ES |
dc.description.references | Zhou, X., Wang, F., Zhou, R., Song, X., & Xie, M. (2017). Apigenin: A current review on its beneficial biological activities. Journal of Food Biochemistry, 41(4), e12376. doi:10.1111/jfbc.12376 | es_ES |
dc.description.references | Zhou, Y., Zheng, J., Li, Y., Xu, D.-P., Li, S., Chen, Y.-M., & Li, H.-B. (2016). Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients, 8(8), 515. doi:10.3390/nu8080515 | es_ES |