- -

Heat current control in trapped Bose-Einstein Condensates

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Heat current control in trapped Bose-Einstein Condensates

Show full item record

Charalambous, C.; Garcia March, MA.; Mehboudi, M.; Lewenstein, M. (2019). Heat current control in trapped Bose-Einstein Condensates. NEW JOURNAL OF PHYSICS. 21:1-18. https://doi.org/10.1088/1367-2630/ab3832

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159859

Files in this item

Item Metadata

Title: Heat current control in trapped Bose-Einstein Condensates
Author: Charalambous, C. Garcia March, Miguel Angel Mehboudi, M. Lewenstein, M.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
[EN] We investigate the heat transport and the control of heat current among two spatially separated trapped Bose-Einstein Condensates (BECs), each of them at a different temperature. To allow for heat transport among the ...[+]
Subjects: Heat transport , Open quantum systems , Dipolar interactions , Heat rectification , Quantum Brownian motion , Phononics in Bose-Einstein Condensates (BEC) , Heat diode
Copyrigths: Reconocimiento (by)
NEW JOURNAL OF PHYSICS. (issn: 1367-2630 )
DOI: 10.1088/1367-2630/ab3832
IOP Publishing
Publisher version: https://doi.org/10.1088/1367-2630/ab3832
Project ID:
info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/
info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/
info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/
info:eu-repo/grantAgreement/EC/H2020/833801/EU/NOvel Quantum simulators – connectIng Areas/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/
GC/SGR 1341
GC/SGR 1381
We thank fruitful discussions with Andreu Riera-Campeny. We acknowledge the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVEROOCHOA No. SEV-2015-0522), the Ministry of Education of ...[+]
Type: Artículo


Terraneo, M., Peyrard, M., & Casati, G. (2002). Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Physical Review Letters, 88(9). doi:10.1103/physrevlett.88.094302

Li, B., Wang, L., & Casati, G. (2004). Thermal Diode: Rectification of Heat Flux. Physical Review Letters, 93(18). doi:10.1103/physrevlett.93.184301

Li, B., Lan, J., & Wang, L. (2005). Interface Thermal Resistance between Dissimilar Anharmonic Lattices. Physical Review Letters, 95(10). doi:10.1103/physrevlett.95.104302 [+]
Terraneo, M., Peyrard, M., & Casati, G. (2002). Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Physical Review Letters, 88(9). doi:10.1103/physrevlett.88.094302

Li, B., Wang, L., & Casati, G. (2004). Thermal Diode: Rectification of Heat Flux. Physical Review Letters, 93(18). doi:10.1103/physrevlett.93.184301

Li, B., Lan, J., & Wang, L. (2005). Interface Thermal Resistance between Dissimilar Anharmonic Lattices. Physical Review Letters, 95(10). doi:10.1103/physrevlett.95.104302

Hu, B., Yang, L., & Zhang, Y. (2006). Asymmetric Heat Conduction in Nonlinear Lattices. Physical Review Letters, 97(12). doi:10.1103/physrevlett.97.124302

Li, B., Wang, L., & Casati, G. (2006). Negative differential thermal resistance and thermal transistor. Applied Physics Letters, 88(14), 143501. doi:10.1063/1.2191730

Segal, D., & Nitzan, A. (2006). Molecular heat pump. Physical Review E, 73(2). doi:10.1103/physreve.73.026109

Ren, J., Hänggi, P., & Li, B. (2010). Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem. Physical Review Letters, 104(17). doi:10.1103/physrevlett.104.170601

Wang, L., & Li, B. (2008). Thermal Memory: A Storage of Phononic Information. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.267203

Wang, L., & Li, B. (2008). Phononics gets hot. Physics World, 21(03), 27-29. doi:10.1088/2058-7058/21/03/31

Li, H., Agarwalla, B. K., & Wang, J.-S. (2012). Generalized Caroli formula for the transmission coefficient with lead-lead coupling. Physical Review E, 86(1). doi:10.1103/physreve.86.011141

Dubi, Y., & Di Ventra, M. (2011). Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Reviews of Modern Physics, 83(1), 131-155. doi:10.1103/revmodphys.83.131

Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M., & Pekola, J. P. (2006). Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Reviews of Modern Physics, 78(1), 217-274. doi:10.1103/revmodphys.78.217

Dhar, A. (2008). Heat transport in low-dimensional systems. Advances in Physics, 57(5), 457-537. doi:10.1080/00018730802538522

Lepri, S. (2003). Thermal conduction in classical low-dimensional lattices. Physics Reports, 377(1), 1-80. doi:10.1016/s0370-1573(02)00558-6

Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., & Li, B. (2012). Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics, 84(3), 1045-1066. doi:10.1103/revmodphys.84.1045

Chang, C. W., Okawa, D., Majumdar, A., & Zettl, A. (2006). Solid-State Thermal Rectifier. Science, 314(5802), 1121-1124. doi:10.1126/science.1132898

Saira, O.-P., Meschke, M., Giazotto, F., Savin, A. M., Möttönen, M., & Pekola, J. P. (2007). Heat Transistor: Demonstration of Gate-Controlled Electronic Refrigeration. Physical Review Letters, 99(2). doi:10.1103/physrevlett.99.027203

Segal, D., & Nitzan, A. (2005). Spin-Boson Thermal Rectifier. Physical Review Letters, 94(3). doi:10.1103/physrevlett.94.034301

Segal, D., & Nitzan, A. (2005). Heat rectification in molecular junctions. The Journal of Chemical Physics, 122(19), 194704. doi:10.1063/1.1900063

Lan, J., & Li, B. (2006). Thermal rectifying effect in two-dimensional anharmonic lattices. Physical Review B, 74(21). doi:10.1103/physrevb.74.214305

Hu, B., & Yang, L. (2005). Heat conduction in the Frenkel–Kontorova model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(1), 015119. doi:10.1063/1.1862552

Yang, N., Li, N., Wang, L., & Li, B. (2007). Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Physical Review B, 76(2). doi:10.1103/physrevb.76.020301

Jaramillo, J., Beau, M., & Campo, A. del. (2016). Quantum supremacy of many-particle thermal machines. New Journal of Physics, 18(7), 075019. doi:10.1088/1367-2630/18/7/075019

Ye, Z., Hu, Y., He, J., & Wang, J. (2017). Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms. Scientific Reports, 7(1). doi:10.1038/s41598-017-06615-z

Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., … Muga, J. G. (2013). Shortcuts to Adiabaticity. Advances in Atomic, Molecular, and Optical Physics, 117-169. doi:10.1016/b978-0-12-408090-4.00002-5

Deffner, S., Jarzynski, C., & del Campo, A. (2014). Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving. Physical Review X, 4(2). doi:10.1103/physrevx.4.021013

Renklioglu, B., Tanatar, B., & Oktel, M. Ö. (2016). Heat transfer through dipolar coupling: Sympathetic cooling without contact. Physical Review A, 93(2). doi:10.1103/physreva.93.023620

Lampo, A., García March, M. Á., & Lewenstein, M. (2019). Quantum Brownian Motion Revisited. SpringerBriefs in Physics. doi:10.1007/978-3-030-16804-9

Lampo, A., Charalambous, C., García-March, M. Á., & Lewenstein, M. (2018). Non-Markovian polaron dynamics in a trapped Bose-Einstein condensate. Physical Review A, 98(6). doi:10.1103/physreva.98.063630

Petrov, D. S., Gangardt, D. M., & Shlyapnikov, G. V. (2004). Low-dimensional trapped gases. Journal de Physique IV (Proceedings), 116, 5-44. doi:10.1051/jp4:2004116001

Coleman, S., & Norton, R. E. (1962). Runaway Modes in Model Field Theories. Physical Review, 125(4), 1422-1428. doi:10.1103/physrev.125.1422

Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., & Pfau, T. (2009). The physics of dipolar bosonic quantum gases. Reports on Progress in Physics, 72(12), 126401. doi:10.1088/0034-4885/72/12/126401

Giorgini, S., Pitaevskii, L. P., & Stringari, S. (2008). Theory of ultracold atomic Fermi gases. Reviews of Modern Physics, 80(4), 1215-1274. doi:10.1103/revmodphys.80.1215

Hofer, P. P., Perarnau-Llobet, M., Miranda, L. D. M., Haack, G., Silva, R., Brask, J. B., & Brunner, N. (2017). Markovian master equations for quantum thermal machines: local versus global approach. New Journal of Physics, 19(12), 123037. doi:10.1088/1367-2630/aa964f

Valido, A. A., Alonso, D., & Kohler, S. (2013). Gaussian entanglement induced by an extended thermal environment. Physical Review A, 88(4). doi:10.1103/physreva.88.042303

Qin, M., Shen, H. Z., Zhao, X. L., & Yi, X. X. (2017). Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach. Physical Review A, 96(1). doi:10.1103/physreva.96.012125

Dhar, A., & Dandekar, R. (2015). Heat transport and current fluctuations in harmonic crystals. Physica A: Statistical Mechanics and its Applications, 418, 49-64. doi:10.1016/j.physa.2014.06.002

Charalambous, C., Garcia-March, M. A., Lampo, A., Mehboud, M., & Lewenstein, M. (2019). Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons. SciPost Physics, 6(1). doi:10.21468/scipostphys.6.1.010

Rza̧żewski, K., & Żakowicz, W. (1980). Initial value problem for two oscillators interacting with electromagnetic field. Journal of Mathematical Physics, 21(2), 378-388. doi:10.1063/1.524426

Lepri, S. (Ed.). (2016). Thermal Transport in Low Dimensions. Lecture Notes in Physics. doi:10.1007/978-3-319-29261-8

Kato, A., & Tanimura, Y. (2016). Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. The Journal of Chemical Physics, 145(22), 224105. doi:10.1063/1.4971370

Gelbwaser-Klimovsky, D., & Aspuru-Guzik, A. (2015). Strongly Coupled Quantum Heat Machines. The Journal of Physical Chemistry Letters, 6(17), 3477-3482. doi:10.1021/acs.jpclett.5b01404

Dhar, A., & Sriram Shastry, B. (2003). Quantum transport using the Ford-Kac-Mazur formalism. Physical Review B, 67(19). doi:10.1103/physrevb.67.195405

Das, S. G., & Dhar, A. (2012). Landauer formula for phonon heat conduction: relation between energy transmittance and transmission coefficient. The European Physical Journal B, 85(11). doi:10.1140/epjb/e2012-30640-x

Zürcher, U., & Talkner, P. (1990). Quantum-mechanical harmonic chain attached to heat baths. II. Nonequilibrium properties. Physical Review A, 42(6), 3278-3290. doi:10.1103/physreva.42.3278

Segal, D., Nitzan, A., & Hänggi, P. (2003). Thermal conductance through molecular wires. The Journal of Chemical Physics, 119(13), 6840-6855. doi:10.1063/1.1603211

Dhar, A., & Sen, D. (2006). Nonequilibrium Green’s function formalism and the problem of bound states. Physical Review B, 73(8). doi:10.1103/physrevb.73.085119

Liu, K.-L., & Goan, H.-S. (2007). Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments. Physical Review A, 76(2). doi:10.1103/physreva.76.022312

Vasile, R., Giorda, P., Olivares, S., Paris, M. G. A., & Maniscalco, S. (2010). Nonclassical correlations in non-Markovian continuous-variable systems. Physical Review A, 82(1). doi:10.1103/physreva.82.012313

Caso, A., Arrachea, L., & Lozano, G. S. (2012). Defining the effective temperature of a quantum driven system from current-current correlation functions. The European Physical Journal B, 85(8). doi:10.1140/epjb/e2012-30303-0

Blanter, Y. M., & Büttiker, M. (2000). Shot noise in mesoscopic conductors. Physics Reports, 336(1-2), 1-166. doi:10.1016/s0370-1573(99)00123-4

KOHLER, S., LEHMANN, J., & HANGGI, P. (2005). Driven quantum transport on the nanoscale. Physics Reports, 406(6), 379-443. doi:10.1016/j.physrep.2004.11.002

Catani, J., Lamporesi, G., Naik, D., Gring, M., Inguscio, M., Minardi, F., … Giamarchi, T. (2012). Quantum dynamics of impurities in a one-dimensional Bose gas. Physical Review A, 85(2). doi:10.1103/physreva.85.023623

Sherson, J. F., Weitenberg, C., Endres, M., Cheneau, M., Bloch, I., & Kuhr, S. (2010). Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature, 467(7311), 68-72. doi:10.1038/nature09378

Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S., & Greiner, M. (2009). A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature, 462(7269), 74-77. doi:10.1038/nature08482

Islam, R., Ma, R., Preiss, P. M., Eric Tai, M., Lukin, A., Rispoli, M., & Greiner, M. (2015). Measuring entanglement entropy in a quantum many-body system. Nature, 528(7580), 77-83. doi:10.1038/nature15750

Freitas, N., & Paz, J. P. (2017). Fundamental limits for cooling of linear quantum refrigerators. Physical Review E, 95(1). doi:10.1103/physreve.95.012146

Camalet, S., Lehmann, J., Kohler, S., & Hänggi, P. (2003). Current Noise in ac-Driven Nanoscale Conductors. Physical Review Letters, 90(21). doi:10.1103/physrevlett.90.210602

Camalet, S., Kohler, S., & Hänggi, P. (2004). Shot-noise control in ac-driven nanoscale conductors. Physical Review B, 70(15). doi:10.1103/physrevb.70.155326

Lehmann, J., Kohler, S., Hänggi, P., & Nitzan, A. (2003). Rectification of laser-induced electronic transport through molecules. The Journal of Chemical Physics, 118(7), 3283-3293. doi:10.1063/1.1536639

Lampo, A., Lim, S. H., García-March, M. Á., & Lewenstein, M. (2017). Bose polaron as an instance of quantum Brownian motion. Quantum, 1, 30. doi:10.22331/q-2017-09-27-30

Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., & Hadzibabic, Z. (2013). Bose-Einstein Condensation of Atoms in a Uniform Potential. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.200406

Mehboudi, M., Lampo, A., Charalambous, C., Correa, L. A., García-March, M. Á., & Lewenstein, M. (2019). Using Polarons for sub-nK Quantum Nondemolition Thermometry in a Bose-Einstein Condensate. Physical Review Letters, 122(3). doi:10.1103/physrevlett.122.030403

Mehboudi, M., Sanpera, A., & Correa, L. A. (2019). Thermometry in the quantum regime: recent theoretical progress. Journal of Physics A: Mathematical and Theoretical, 52(30), 303001. doi:10.1088/1751-8121/ab2828




This item appears in the following Collection(s)

Show full item record