Mostrar el registro sencillo del ítem
dc.contributor.author | Charalambous, C. | es_ES |
dc.contributor.author | Garcia March, Miguel Angel | es_ES |
dc.contributor.author | Mehboudi, M. | es_ES |
dc.contributor.author | Lewenstein, M. | es_ES |
dc.date.accessioned | 2021-01-26T04:32:37Z | |
dc.date.available | 2021-01-26T04:32:37Z | |
dc.date.issued | 2019-08-22 | es_ES |
dc.identifier.issn | 1367-2630 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159859 | |
dc.description.abstract | [EN] We investigate the heat transport and the control of heat current among two spatially separated trapped Bose-Einstein Condensates (BECs), each of them at a different temperature. To allow for heat transport among the two independent BECs we consider a link made of two harmonically trapped impurities, each of them interacting with one of the BECs. Since the impurities are spatially separated, we consider long-range interactions between them, namely a dipole-dipole coupling. We study this system under theoretically suitable and experimentally feasible assumptions/parameters. The dynamics of these impurities is treated within the framework of the quantum Brownian motion model, where the excitation modes of the BECs play the role of the heat bath. We address the dependence of heat current and current-current correlations on the physical parameters of the system. Interestingly, we show that heat rectification, i.e. the unidirectional flow of heat, can occur in our system, when a periodic driving on the trapping frequencies of the impurities is considered. Therefore, our system is a possible setup for the implementation of a phononic circuit. Motivated by recent developments on the usage of BECs as platforms for quantum information processing, our work offers an alternative possibility to use this versatile setting for information transfer and processing, within the context of phononics, and more generally in quantum thermodynamics. | es_ES |
dc.description.sponsorship | We thank fruitful discussions with Andreu Riera-Campeny. We acknowledge the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVEROOCHOA No. SEV-2015-0522), the Ministry of Education of Spain (FPI Grant BES-2015-071803), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS and NOQIA, EU FETPRO QUIC, and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. MM acknowledges support from the Spanish MINECO (QIBEQI FIS2016-80773-P and Severo Ochoa SEV-2015-0522), Fundacio Privada Cellex, and the Generalitat de Catalunya (CERCA Program and SGR1381). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | NEW JOURNAL OF PHYSICS | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Heat transport | es_ES |
dc.subject | Open quantum systems | es_ES |
dc.subject | Dipolar interactions | es_ES |
dc.subject | Heat rectification | es_ES |
dc.subject | Quantum Brownian motion | es_ES |
dc.subject | Phononics in Bose-Einstein Condensates (BEC) | es_ES |
dc.subject | Heat diode | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Heat current control in trapped Bose-Einstein Condensates | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1367-2630/ab3832 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1381/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/833801/EU/NOvel Quantum simulators – connectIng Areas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-071803/ES/BES-2015-071803/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2016-80773-P/ES/INFORMACION CUANTICA MAS ALLA DE LA INFORMACION CUANTICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Charalambous, C.; Garcia March, MA.; Mehboudi, M.; Lewenstein, M. (2019). Heat current control in trapped Bose-Einstein Condensates. NEW JOURNAL OF PHYSICS. 21:1-18. https://doi.org/10.1088/1367-2630/ab3832 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/1367-2630/ab3832 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.relation.pasarela | S\409630 | es_ES |
dc.contributor.funder | Fundación Cellex | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | National Science Centre, Polonia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Terraneo, M., Peyrard, M., & Casati, G. (2002). Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Physical Review Letters, 88(9). doi:10.1103/physrevlett.88.094302 | es_ES |
dc.description.references | Li, B., Wang, L., & Casati, G. (2004). Thermal Diode: Rectification of Heat Flux. Physical Review Letters, 93(18). doi:10.1103/physrevlett.93.184301 | es_ES |
dc.description.references | Li, B., Lan, J., & Wang, L. (2005). Interface Thermal Resistance between Dissimilar Anharmonic Lattices. Physical Review Letters, 95(10). doi:10.1103/physrevlett.95.104302 | es_ES |
dc.description.references | Hu, B., Yang, L., & Zhang, Y. (2006). Asymmetric Heat Conduction in Nonlinear Lattices. Physical Review Letters, 97(12). doi:10.1103/physrevlett.97.124302 | es_ES |
dc.description.references | Li, B., Wang, L., & Casati, G. (2006). Negative differential thermal resistance and thermal transistor. Applied Physics Letters, 88(14), 143501. doi:10.1063/1.2191730 | es_ES |
dc.description.references | Segal, D., & Nitzan, A. (2006). Molecular heat pump. Physical Review E, 73(2). doi:10.1103/physreve.73.026109 | es_ES |
dc.description.references | Ren, J., Hänggi, P., & Li, B. (2010). Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem. Physical Review Letters, 104(17). doi:10.1103/physrevlett.104.170601 | es_ES |
dc.description.references | Wang, L., & Li, B. (2008). Thermal Memory: A Storage of Phononic Information. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.267203 | es_ES |
dc.description.references | Wang, L., & Li, B. (2008). Phononics gets hot. Physics World, 21(03), 27-29. doi:10.1088/2058-7058/21/03/31 | es_ES |
dc.description.references | Li, H., Agarwalla, B. K., & Wang, J.-S. (2012). Generalized Caroli formula for the transmission coefficient with lead-lead coupling. Physical Review E, 86(1). doi:10.1103/physreve.86.011141 | es_ES |
dc.description.references | Dubi, Y., & Di Ventra, M. (2011). Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Reviews of Modern Physics, 83(1), 131-155. doi:10.1103/revmodphys.83.131 | es_ES |
dc.description.references | Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M., & Pekola, J. P. (2006). Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Reviews of Modern Physics, 78(1), 217-274. doi:10.1103/revmodphys.78.217 | es_ES |
dc.description.references | Dhar, A. (2008). Heat transport in low-dimensional systems. Advances in Physics, 57(5), 457-537. doi:10.1080/00018730802538522 | es_ES |
dc.description.references | Lepri, S. (2003). Thermal conduction in classical low-dimensional lattices. Physics Reports, 377(1), 1-80. doi:10.1016/s0370-1573(02)00558-6 | es_ES |
dc.description.references | Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., & Li, B. (2012). Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics, 84(3), 1045-1066. doi:10.1103/revmodphys.84.1045 | es_ES |
dc.description.references | Chang, C. W., Okawa, D., Majumdar, A., & Zettl, A. (2006). Solid-State Thermal Rectifier. Science, 314(5802), 1121-1124. doi:10.1126/science.1132898 | es_ES |
dc.description.references | Saira, O.-P., Meschke, M., Giazotto, F., Savin, A. M., Möttönen, M., & Pekola, J. P. (2007). Heat Transistor: Demonstration of Gate-Controlled Electronic Refrigeration. Physical Review Letters, 99(2). doi:10.1103/physrevlett.99.027203 | es_ES |
dc.description.references | Segal, D., & Nitzan, A. (2005). Spin-Boson Thermal Rectifier. Physical Review Letters, 94(3). doi:10.1103/physrevlett.94.034301 | es_ES |
dc.description.references | Segal, D., & Nitzan, A. (2005). Heat rectification in molecular junctions. The Journal of Chemical Physics, 122(19), 194704. doi:10.1063/1.1900063 | es_ES |
dc.description.references | Lan, J., & Li, B. (2006). Thermal rectifying effect in two-dimensional anharmonic lattices. Physical Review B, 74(21). doi:10.1103/physrevb.74.214305 | es_ES |
dc.description.references | Hu, B., & Yang, L. (2005). Heat conduction in the Frenkel–Kontorova model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(1), 015119. doi:10.1063/1.1862552 | es_ES |
dc.description.references | Yang, N., Li, N., Wang, L., & Li, B. (2007). Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Physical Review B, 76(2). doi:10.1103/physrevb.76.020301 | es_ES |
dc.description.references | Jaramillo, J., Beau, M., & Campo, A. del. (2016). Quantum supremacy of many-particle thermal machines. New Journal of Physics, 18(7), 075019. doi:10.1088/1367-2630/18/7/075019 | es_ES |
dc.description.references | Ye, Z., Hu, Y., He, J., & Wang, J. (2017). Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms. Scientific Reports, 7(1). doi:10.1038/s41598-017-06615-z | es_ES |
dc.description.references | Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., … Muga, J. G. (2013). Shortcuts to Adiabaticity. Advances in Atomic, Molecular, and Optical Physics, 117-169. doi:10.1016/b978-0-12-408090-4.00002-5 | es_ES |
dc.description.references | Deffner, S., Jarzynski, C., & del Campo, A. (2014). Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving. Physical Review X, 4(2). doi:10.1103/physrevx.4.021013 | es_ES |
dc.description.references | Renklioglu, B., Tanatar, B., & Oktel, M. Ö. (2016). Heat transfer through dipolar coupling: Sympathetic cooling without contact. Physical Review A, 93(2). doi:10.1103/physreva.93.023620 | es_ES |
dc.description.references | Lampo, A., García March, M. Á., & Lewenstein, M. (2019). Quantum Brownian Motion Revisited. SpringerBriefs in Physics. doi:10.1007/978-3-030-16804-9 | es_ES |
dc.description.references | Lampo, A., Charalambous, C., García-March, M. Á., & Lewenstein, M. (2018). Non-Markovian polaron dynamics in a trapped Bose-Einstein condensate. Physical Review A, 98(6). doi:10.1103/physreva.98.063630 | es_ES |
dc.description.references | Petrov, D. S., Gangardt, D. M., & Shlyapnikov, G. V. (2004). Low-dimensional trapped gases. Journal de Physique IV (Proceedings), 116, 5-44. doi:10.1051/jp4:2004116001 | es_ES |
dc.description.references | Coleman, S., & Norton, R. E. (1962). Runaway Modes in Model Field Theories. Physical Review, 125(4), 1422-1428. doi:10.1103/physrev.125.1422 | es_ES |
dc.description.references | Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., & Pfau, T. (2009). The physics of dipolar bosonic quantum gases. Reports on Progress in Physics, 72(12), 126401. doi:10.1088/0034-4885/72/12/126401 | es_ES |
dc.description.references | Giorgini, S., Pitaevskii, L. P., & Stringari, S. (2008). Theory of ultracold atomic Fermi gases. Reviews of Modern Physics, 80(4), 1215-1274. doi:10.1103/revmodphys.80.1215 | es_ES |
dc.description.references | Hofer, P. P., Perarnau-Llobet, M., Miranda, L. D. M., Haack, G., Silva, R., Brask, J. B., & Brunner, N. (2017). Markovian master equations for quantum thermal machines: local versus global approach. New Journal of Physics, 19(12), 123037. doi:10.1088/1367-2630/aa964f | es_ES |
dc.description.references | Valido, A. A., Alonso, D., & Kohler, S. (2013). Gaussian entanglement induced by an extended thermal environment. Physical Review A, 88(4). doi:10.1103/physreva.88.042303 | es_ES |
dc.description.references | Qin, M., Shen, H. Z., Zhao, X. L., & Yi, X. X. (2017). Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach. Physical Review A, 96(1). doi:10.1103/physreva.96.012125 | es_ES |
dc.description.references | Dhar, A., & Dandekar, R. (2015). Heat transport and current fluctuations in harmonic crystals. Physica A: Statistical Mechanics and its Applications, 418, 49-64. doi:10.1016/j.physa.2014.06.002 | es_ES |
dc.description.references | Charalambous, C., Garcia-March, M. A., Lampo, A., Mehboud, M., & Lewenstein, M. (2019). Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons. SciPost Physics, 6(1). doi:10.21468/scipostphys.6.1.010 | es_ES |
dc.description.references | Rza̧żewski, K., & Żakowicz, W. (1980). Initial value problem for two oscillators interacting with electromagnetic field. Journal of Mathematical Physics, 21(2), 378-388. doi:10.1063/1.524426 | es_ES |
dc.description.references | Lepri, S. (Ed.). (2016). Thermal Transport in Low Dimensions. Lecture Notes in Physics. doi:10.1007/978-3-319-29261-8 | es_ES |
dc.description.references | Kato, A., & Tanimura, Y. (2016). Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. The Journal of Chemical Physics, 145(22), 224105. doi:10.1063/1.4971370 | es_ES |
dc.description.references | Gelbwaser-Klimovsky, D., & Aspuru-Guzik, A. (2015). Strongly Coupled Quantum Heat Machines. The Journal of Physical Chemistry Letters, 6(17), 3477-3482. doi:10.1021/acs.jpclett.5b01404 | es_ES |
dc.description.references | Dhar, A., & Sriram Shastry, B. (2003). Quantum transport using the Ford-Kac-Mazur formalism. Physical Review B, 67(19). doi:10.1103/physrevb.67.195405 | es_ES |
dc.description.references | Das, S. G., & Dhar, A. (2012). Landauer formula for phonon heat conduction: relation between energy transmittance and transmission coefficient. The European Physical Journal B, 85(11). doi:10.1140/epjb/e2012-30640-x | es_ES |
dc.description.references | Zürcher, U., & Talkner, P. (1990). Quantum-mechanical harmonic chain attached to heat baths. II. Nonequilibrium properties. Physical Review A, 42(6), 3278-3290. doi:10.1103/physreva.42.3278 | es_ES |
dc.description.references | Segal, D., Nitzan, A., & Hänggi, P. (2003). Thermal conductance through molecular wires. The Journal of Chemical Physics, 119(13), 6840-6855. doi:10.1063/1.1603211 | es_ES |
dc.description.references | Dhar, A., & Sen, D. (2006). Nonequilibrium Green’s function formalism and the problem of bound states. Physical Review B, 73(8). doi:10.1103/physrevb.73.085119 | es_ES |
dc.description.references | Liu, K.-L., & Goan, H.-S. (2007). Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments. Physical Review A, 76(2). doi:10.1103/physreva.76.022312 | es_ES |
dc.description.references | Vasile, R., Giorda, P., Olivares, S., Paris, M. G. A., & Maniscalco, S. (2010). Nonclassical correlations in non-Markovian continuous-variable systems. Physical Review A, 82(1). doi:10.1103/physreva.82.012313 | es_ES |
dc.description.references | Caso, A., Arrachea, L., & Lozano, G. S. (2012). Defining the effective temperature of a quantum driven system from current-current correlation functions. The European Physical Journal B, 85(8). doi:10.1140/epjb/e2012-30303-0 | es_ES |
dc.description.references | Blanter, Y. M., & Büttiker, M. (2000). Shot noise in mesoscopic conductors. Physics Reports, 336(1-2), 1-166. doi:10.1016/s0370-1573(99)00123-4 | es_ES |
dc.description.references | KOHLER, S., LEHMANN, J., & HANGGI, P. (2005). Driven quantum transport on the nanoscale. Physics Reports, 406(6), 379-443. doi:10.1016/j.physrep.2004.11.002 | es_ES |
dc.description.references | Catani, J., Lamporesi, G., Naik, D., Gring, M., Inguscio, M., Minardi, F., … Giamarchi, T. (2012). Quantum dynamics of impurities in a one-dimensional Bose gas. Physical Review A, 85(2). doi:10.1103/physreva.85.023623 | es_ES |
dc.description.references | Sherson, J. F., Weitenberg, C., Endres, M., Cheneau, M., Bloch, I., & Kuhr, S. (2010). Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature, 467(7311), 68-72. doi:10.1038/nature09378 | es_ES |
dc.description.references | Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S., & Greiner, M. (2009). A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature, 462(7269), 74-77. doi:10.1038/nature08482 | es_ES |
dc.description.references | Islam, R., Ma, R., Preiss, P. M., Eric Tai, M., Lukin, A., Rispoli, M., & Greiner, M. (2015). Measuring entanglement entropy in a quantum many-body system. Nature, 528(7580), 77-83. doi:10.1038/nature15750 | es_ES |
dc.description.references | Freitas, N., & Paz, J. P. (2017). Fundamental limits for cooling of linear quantum refrigerators. Physical Review E, 95(1). doi:10.1103/physreve.95.012146 | es_ES |
dc.description.references | Camalet, S., Lehmann, J., Kohler, S., & Hänggi, P. (2003). Current Noise in ac-Driven Nanoscale Conductors. Physical Review Letters, 90(21). doi:10.1103/physrevlett.90.210602 | es_ES |
dc.description.references | Camalet, S., Kohler, S., & Hänggi, P. (2004). Shot-noise control in ac-driven nanoscale conductors. Physical Review B, 70(15). doi:10.1103/physrevb.70.155326 | es_ES |
dc.description.references | Lehmann, J., Kohler, S., Hänggi, P., & Nitzan, A. (2003). Rectification of laser-induced electronic transport through molecules. The Journal of Chemical Physics, 118(7), 3283-3293. doi:10.1063/1.1536639 | es_ES |
dc.description.references | Lampo, A., Lim, S. H., García-March, M. Á., & Lewenstein, M. (2017). Bose polaron as an instance of quantum Brownian motion. Quantum, 1, 30. doi:10.22331/q-2017-09-27-30 | es_ES |
dc.description.references | Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., & Hadzibabic, Z. (2013). Bose-Einstein Condensation of Atoms in a Uniform Potential. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.200406 | es_ES |
dc.description.references | Mehboudi, M., Lampo, A., Charalambous, C., Correa, L. A., García-March, M. Á., & Lewenstein, M. (2019). Using Polarons for sub-nK Quantum Nondemolition Thermometry in a Bose-Einstein Condensate. Physical Review Letters, 122(3). doi:10.1103/physrevlett.122.030403 | es_ES |
dc.description.references | Mehboudi, M., Sanpera, A., & Correa, L. A. (2019). Thermometry in the quantum regime: recent theoretical progress. Journal of Physics A: Mathematical and Theoretical, 52(30), 303001. doi:10.1088/1751-8121/ab2828 | es_ES |