- -

Heat current control in trapped Bose-Einstein Condensates

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Heat current control in trapped Bose-Einstein Condensates

Show simple item record

Files in this item

dc.contributor.author Charalambous, C. es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.contributor.author Mehboudi, M. es_ES
dc.contributor.author Lewenstein, M. es_ES
dc.date.accessioned 2021-01-26T04:32:37Z
dc.date.available 2021-01-26T04:32:37Z
dc.date.issued 2019-08-22 es_ES
dc.identifier.issn 1367-2630 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159859
dc.description.abstract [EN] We investigate the heat transport and the control of heat current among two spatially separated trapped Bose-Einstein Condensates (BECs), each of them at a different temperature. To allow for heat transport among the two independent BECs we consider a link made of two harmonically trapped impurities, each of them interacting with one of the BECs. Since the impurities are spatially separated, we consider long-range interactions between them, namely a dipole-dipole coupling. We study this system under theoretically suitable and experimentally feasible assumptions/parameters. The dynamics of these impurities is treated within the framework of the quantum Brownian motion model, where the excitation modes of the BECs play the role of the heat bath. We address the dependence of heat current and current-current correlations on the physical parameters of the system. Interestingly, we show that heat rectification, i.e. the unidirectional flow of heat, can occur in our system, when a periodic driving on the trapping frequencies of the impurities is considered. Therefore, our system is a possible setup for the implementation of a phononic circuit. Motivated by recent developments on the usage of BECs as platforms for quantum information processing, our work offers an alternative possibility to use this versatile setting for information transfer and processing, within the context of phononics, and more generally in quantum thermodynamics. es_ES
dc.description.sponsorship We thank fruitful discussions with Andreu Riera-Campeny. We acknowledge the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVEROOCHOA No. SEV-2015-0522), the Ministry of Education of Spain (FPI Grant BES-2015-071803), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS and NOQIA, EU FETPRO QUIC, and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. MM acknowledges support from the Spanish MINECO (QIBEQI FIS2016-80773-P and Severo Ochoa SEV-2015-0522), Fundacio Privada Cellex, and the Generalitat de Catalunya (CERCA Program and SGR1381). es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof NEW JOURNAL OF PHYSICS es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Heat transport es_ES
dc.subject Open quantum systems es_ES
dc.subject Dipolar interactions es_ES
dc.subject Heat rectification es_ES
dc.subject Quantum Brownian motion es_ES
dc.subject Phononics in Bose-Einstein Condensates (BEC) es_ES
dc.subject Heat diode es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Heat current control in trapped Bose-Einstein Condensates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/ab3832 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1381/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/833801/EU/NOvel Quantum simulators – connectIng Areas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-071803/ES/BES-2015-071803/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-80773-P/ES/INFORMACION CUANTICA MAS ALLA DE LA INFORMACION CUANTICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Charalambous, C.; Garcia March, MA.; Mehboudi, M.; Lewenstein, M. (2019). Heat current control in trapped Bose-Einstein Condensates. NEW JOURNAL OF PHYSICS. 21:1-18. https://doi.org/10.1088/1367-2630/ab3832 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1367-2630/ab3832 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.relation.pasarela S\409630 es_ES
dc.contributor.funder Fundación Cellex es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Terraneo, M., Peyrard, M., & Casati, G. (2002). Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Physical Review Letters, 88(9). doi:10.1103/physrevlett.88.094302 es_ES
dc.description.references Li, B., Wang, L., & Casati, G. (2004). Thermal Diode: Rectification of Heat Flux. Physical Review Letters, 93(18). doi:10.1103/physrevlett.93.184301 es_ES
dc.description.references Li, B., Lan, J., & Wang, L. (2005). Interface Thermal Resistance between Dissimilar Anharmonic Lattices. Physical Review Letters, 95(10). doi:10.1103/physrevlett.95.104302 es_ES
dc.description.references Hu, B., Yang, L., & Zhang, Y. (2006). Asymmetric Heat Conduction in Nonlinear Lattices. Physical Review Letters, 97(12). doi:10.1103/physrevlett.97.124302 es_ES
dc.description.references Li, B., Wang, L., & Casati, G. (2006). Negative differential thermal resistance and thermal transistor. Applied Physics Letters, 88(14), 143501. doi:10.1063/1.2191730 es_ES
dc.description.references Segal, D., & Nitzan, A. (2006). Molecular heat pump. Physical Review E, 73(2). doi:10.1103/physreve.73.026109 es_ES
dc.description.references Ren, J., Hänggi, P., & Li, B. (2010). Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem. Physical Review Letters, 104(17). doi:10.1103/physrevlett.104.170601 es_ES
dc.description.references Wang, L., & Li, B. (2008). Thermal Memory: A Storage of Phononic Information. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.267203 es_ES
dc.description.references Wang, L., & Li, B. (2008). Phononics gets hot. Physics World, 21(03), 27-29. doi:10.1088/2058-7058/21/03/31 es_ES
dc.description.references Li, H., Agarwalla, B. K., & Wang, J.-S. (2012). Generalized Caroli formula for the transmission coefficient with lead-lead coupling. Physical Review E, 86(1). doi:10.1103/physreve.86.011141 es_ES
dc.description.references Dubi, Y., & Di Ventra, M. (2011). Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Reviews of Modern Physics, 83(1), 131-155. doi:10.1103/revmodphys.83.131 es_ES
dc.description.references Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M., & Pekola, J. P. (2006). Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Reviews of Modern Physics, 78(1), 217-274. doi:10.1103/revmodphys.78.217 es_ES
dc.description.references Dhar, A. (2008). Heat transport in low-dimensional systems. Advances in Physics, 57(5), 457-537. doi:10.1080/00018730802538522 es_ES
dc.description.references Lepri, S. (2003). Thermal conduction in classical low-dimensional lattices. Physics Reports, 377(1), 1-80. doi:10.1016/s0370-1573(02)00558-6 es_ES
dc.description.references Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., & Li, B. (2012). Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics, 84(3), 1045-1066. doi:10.1103/revmodphys.84.1045 es_ES
dc.description.references Chang, C. W., Okawa, D., Majumdar, A., & Zettl, A. (2006). Solid-State Thermal Rectifier. Science, 314(5802), 1121-1124. doi:10.1126/science.1132898 es_ES
dc.description.references Saira, O.-P., Meschke, M., Giazotto, F., Savin, A. M., Möttönen, M., & Pekola, J. P. (2007). Heat Transistor: Demonstration of Gate-Controlled Electronic Refrigeration. Physical Review Letters, 99(2). doi:10.1103/physrevlett.99.027203 es_ES
dc.description.references Segal, D., & Nitzan, A. (2005). Spin-Boson Thermal Rectifier. Physical Review Letters, 94(3). doi:10.1103/physrevlett.94.034301 es_ES
dc.description.references Segal, D., & Nitzan, A. (2005). Heat rectification in molecular junctions. The Journal of Chemical Physics, 122(19), 194704. doi:10.1063/1.1900063 es_ES
dc.description.references Lan, J., & Li, B. (2006). Thermal rectifying effect in two-dimensional anharmonic lattices. Physical Review B, 74(21). doi:10.1103/physrevb.74.214305 es_ES
dc.description.references Hu, B., & Yang, L. (2005). Heat conduction in the Frenkel–Kontorova model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(1), 015119. doi:10.1063/1.1862552 es_ES
dc.description.references Yang, N., Li, N., Wang, L., & Li, B. (2007). Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Physical Review B, 76(2). doi:10.1103/physrevb.76.020301 es_ES
dc.description.references Jaramillo, J., Beau, M., & Campo, A. del. (2016). Quantum supremacy of many-particle thermal machines. New Journal of Physics, 18(7), 075019. doi:10.1088/1367-2630/18/7/075019 es_ES
dc.description.references Ye, Z., Hu, Y., He, J., & Wang, J. (2017). Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms. Scientific Reports, 7(1). doi:10.1038/s41598-017-06615-z es_ES
dc.description.references Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., … Muga, J. G. (2013). Shortcuts to Adiabaticity. Advances in Atomic, Molecular, and Optical Physics, 117-169. doi:10.1016/b978-0-12-408090-4.00002-5 es_ES
dc.description.references Deffner, S., Jarzynski, C., & del Campo, A. (2014). Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving. Physical Review X, 4(2). doi:10.1103/physrevx.4.021013 es_ES
dc.description.references Renklioglu, B., Tanatar, B., & Oktel, M. Ö. (2016). Heat transfer through dipolar coupling: Sympathetic cooling without contact. Physical Review A, 93(2). doi:10.1103/physreva.93.023620 es_ES
dc.description.references Lampo, A., García March, M. Á., & Lewenstein, M. (2019). Quantum Brownian Motion Revisited. SpringerBriefs in Physics. doi:10.1007/978-3-030-16804-9 es_ES
dc.description.references Lampo, A., Charalambous, C., García-March, M. Á., & Lewenstein, M. (2018). Non-Markovian polaron dynamics in a trapped Bose-Einstein condensate. Physical Review A, 98(6). doi:10.1103/physreva.98.063630 es_ES
dc.description.references Petrov, D. S., Gangardt, D. M., & Shlyapnikov, G. V. (2004). Low-dimensional trapped gases. Journal de Physique IV (Proceedings), 116, 5-44. doi:10.1051/jp4:2004116001 es_ES
dc.description.references Coleman, S., & Norton, R. E. (1962). Runaway Modes in Model Field Theories. Physical Review, 125(4), 1422-1428. doi:10.1103/physrev.125.1422 es_ES
dc.description.references Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., & Pfau, T. (2009). The physics of dipolar bosonic quantum gases. Reports on Progress in Physics, 72(12), 126401. doi:10.1088/0034-4885/72/12/126401 es_ES
dc.description.references Giorgini, S., Pitaevskii, L. P., & Stringari, S. (2008). Theory of ultracold atomic Fermi gases. Reviews of Modern Physics, 80(4), 1215-1274. doi:10.1103/revmodphys.80.1215 es_ES
dc.description.references Hofer, P. P., Perarnau-Llobet, M., Miranda, L. D. M., Haack, G., Silva, R., Brask, J. B., & Brunner, N. (2017). Markovian master equations for quantum thermal machines: local versus global approach. New Journal of Physics, 19(12), 123037. doi:10.1088/1367-2630/aa964f es_ES
dc.description.references Valido, A. A., Alonso, D., & Kohler, S. (2013). Gaussian entanglement induced by an extended thermal environment. Physical Review A, 88(4). doi:10.1103/physreva.88.042303 es_ES
dc.description.references Qin, M., Shen, H. Z., Zhao, X. L., & Yi, X. X. (2017). Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach. Physical Review A, 96(1). doi:10.1103/physreva.96.012125 es_ES
dc.description.references Dhar, A., & Dandekar, R. (2015). Heat transport and current fluctuations in harmonic crystals. Physica A: Statistical Mechanics and its Applications, 418, 49-64. doi:10.1016/j.physa.2014.06.002 es_ES
dc.description.references Charalambous, C., Garcia-March, M. A., Lampo, A., Mehboud, M., & Lewenstein, M. (2019). Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons. SciPost Physics, 6(1). doi:10.21468/scipostphys.6.1.010 es_ES
dc.description.references Rza̧żewski, K., & Żakowicz, W. (1980). Initial value problem for two oscillators interacting with electromagnetic field. Journal of Mathematical Physics, 21(2), 378-388. doi:10.1063/1.524426 es_ES
dc.description.references Lepri, S. (Ed.). (2016). Thermal Transport in Low Dimensions. Lecture Notes in Physics. doi:10.1007/978-3-319-29261-8 es_ES
dc.description.references Kato, A., & Tanimura, Y. (2016). Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. The Journal of Chemical Physics, 145(22), 224105. doi:10.1063/1.4971370 es_ES
dc.description.references Gelbwaser-Klimovsky, D., & Aspuru-Guzik, A. (2015). Strongly Coupled Quantum Heat Machines. The Journal of Physical Chemistry Letters, 6(17), 3477-3482. doi:10.1021/acs.jpclett.5b01404 es_ES
dc.description.references Dhar, A., & Sriram Shastry, B. (2003). Quantum transport using the Ford-Kac-Mazur formalism. Physical Review B, 67(19). doi:10.1103/physrevb.67.195405 es_ES
dc.description.references Das, S. G., & Dhar, A. (2012). Landauer formula for phonon heat conduction: relation between energy transmittance and transmission coefficient. The European Physical Journal B, 85(11). doi:10.1140/epjb/e2012-30640-x es_ES
dc.description.references Zürcher, U., & Talkner, P. (1990). Quantum-mechanical harmonic chain attached to heat baths. II. Nonequilibrium properties. Physical Review A, 42(6), 3278-3290. doi:10.1103/physreva.42.3278 es_ES
dc.description.references Segal, D., Nitzan, A., & Hänggi, P. (2003). Thermal conductance through molecular wires. The Journal of Chemical Physics, 119(13), 6840-6855. doi:10.1063/1.1603211 es_ES
dc.description.references Dhar, A., & Sen, D. (2006). Nonequilibrium Green’s function formalism and the problem of bound states. Physical Review B, 73(8). doi:10.1103/physrevb.73.085119 es_ES
dc.description.references Liu, K.-L., & Goan, H.-S. (2007). Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments. Physical Review A, 76(2). doi:10.1103/physreva.76.022312 es_ES
dc.description.references Vasile, R., Giorda, P., Olivares, S., Paris, M. G. A., & Maniscalco, S. (2010). Nonclassical correlations in non-Markovian continuous-variable systems. Physical Review A, 82(1). doi:10.1103/physreva.82.012313 es_ES
dc.description.references Caso, A., Arrachea, L., & Lozano, G. S. (2012). Defining the effective temperature of a quantum driven system from current-current correlation functions. The European Physical Journal B, 85(8). doi:10.1140/epjb/e2012-30303-0 es_ES
dc.description.references Blanter, Y. M., & Büttiker, M. (2000). Shot noise in mesoscopic conductors. Physics Reports, 336(1-2), 1-166. doi:10.1016/s0370-1573(99)00123-4 es_ES
dc.description.references KOHLER, S., LEHMANN, J., & HANGGI, P. (2005). Driven quantum transport on the nanoscale. Physics Reports, 406(6), 379-443. doi:10.1016/j.physrep.2004.11.002 es_ES
dc.description.references Catani, J., Lamporesi, G., Naik, D., Gring, M., Inguscio, M., Minardi, F., … Giamarchi, T. (2012). Quantum dynamics of impurities in a one-dimensional Bose gas. Physical Review A, 85(2). doi:10.1103/physreva.85.023623 es_ES
dc.description.references Sherson, J. F., Weitenberg, C., Endres, M., Cheneau, M., Bloch, I., & Kuhr, S. (2010). Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature, 467(7311), 68-72. doi:10.1038/nature09378 es_ES
dc.description.references Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S., & Greiner, M. (2009). A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature, 462(7269), 74-77. doi:10.1038/nature08482 es_ES
dc.description.references Islam, R., Ma, R., Preiss, P. M., Eric Tai, M., Lukin, A., Rispoli, M., & Greiner, M. (2015). Measuring entanglement entropy in a quantum many-body system. Nature, 528(7580), 77-83. doi:10.1038/nature15750 es_ES
dc.description.references Freitas, N., & Paz, J. P. (2017). Fundamental limits for cooling of linear quantum refrigerators. Physical Review E, 95(1). doi:10.1103/physreve.95.012146 es_ES
dc.description.references Camalet, S., Lehmann, J., Kohler, S., & Hänggi, P. (2003). Current Noise in ac-Driven Nanoscale Conductors. Physical Review Letters, 90(21). doi:10.1103/physrevlett.90.210602 es_ES
dc.description.references Camalet, S., Kohler, S., & Hänggi, P. (2004). Shot-noise control in ac-driven nanoscale conductors. Physical Review B, 70(15). doi:10.1103/physrevb.70.155326 es_ES
dc.description.references Lehmann, J., Kohler, S., Hänggi, P., & Nitzan, A. (2003). Rectification of laser-induced electronic transport through molecules. The Journal of Chemical Physics, 118(7), 3283-3293. doi:10.1063/1.1536639 es_ES
dc.description.references Lampo, A., Lim, S. H., García-March, M. Á., & Lewenstein, M. (2017). Bose polaron as an instance of quantum Brownian motion. Quantum, 1, 30. doi:10.22331/q-2017-09-27-30 es_ES
dc.description.references Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., & Hadzibabic, Z. (2013). Bose-Einstein Condensation of Atoms in a Uniform Potential. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.200406 es_ES
dc.description.references Mehboudi, M., Lampo, A., Charalambous, C., Correa, L. A., García-March, M. Á., & Lewenstein, M. (2019). Using Polarons for sub-nK Quantum Nondemolition Thermometry in a Bose-Einstein Condensate. Physical Review Letters, 122(3). doi:10.1103/physrevlett.122.030403 es_ES
dc.description.references Mehboudi, M., Sanpera, A., & Correa, L. A. (2019). Thermometry in the quantum regime: recent theoretical progress. Journal of Physics A: Mathematical and Theoretical, 52(30), 303001. doi:10.1088/1751-8121/ab2828 es_ES


This item appears in the following Collection(s)

Show simple item record