Mostrar el registro sencillo del ítem
dc.contributor.author | Oliver-Tomás, Borja | es_ES |
dc.contributor.author | Hitzl, Martin | es_ES |
dc.contributor.author | Owsianiak, Mikolaj | es_ES |
dc.contributor.author | Renz, Michael | es_ES |
dc.date.accessioned | 2021-01-27T04:32:01Z | |
dc.date.available | 2021-01-27T04:32:01Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.issn | 0921-3449 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159974 | |
dc.description.abstract | [EN] The organic fraction of municipal solid waste was identified as an alternative phosphorus resource: hydrothermal carbonization provided phosphorus-rich hydrochar. Two alternative valorization pathways can be considered for the latter: the use as a fertilizer or as solid fuel after phosphorus extraction. By means of life cycle assessment (LCA) the environmental impact of extracting phosphorus and using the hydrochar as solid fuel was evaluated. Therefore, in a first step, phosphorus extraction with nitric acid, hydrochloric acid and sulfuric acid was experimentally investigated on laboratory scale. Nitric acid proved to be the most suitable because it offered high extraction efficiency and improved solid fuel properties such as lower ash content and lower levels of chlorine and sulfur. In contrast, hydrochloric acid increased the chlorine content and sulfuric acid only replaced phosphate by sulfate, but did not reduce the ash content of hydrochar. Then phosphorus can be precipitated and used as fertilizer. Although technically feasible, LCA points out that the separate use of hydrochar and phosphorus represents an overall environmental burden for wide range of impact categories, including climate change and resource depletion. Therefore, other applications for phosphorus-rich hydrochars, like agriculture and horticulture, should be considered. | es_ES |
dc.description.sponsorship | The authors are grateful for the financial support received from the Spanish Ministry of Economy and Competiveness under the RTC-2015-4017-3 of the state programme "Research, Development and Innovation Oriented to the Challenges of Society" | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Resources Conservation and Recycling | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Advanced hydrochar | es_ES |
dc.subject | Low-ash solid fuel | es_ES |
dc.subject | Phosphorus extraction | es_ES |
dc.subject | Phosphorus fertilizer | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.resconrec.2019.04.023 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTC-2015-4017-3Q2818002DC.VALENCIANA/ES/Producción de un hydrochar slurry (HCS) a partir de residuos vegetales procesándolos en la planta prototipo de Ingelia y refino del producto carbonizado/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTC-2015-4017-3/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Oliver-Tomás, B.; Hitzl, M.; Owsianiak, M.; Renz, M. (2019). Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste. Resources Conservation and Recycling. 147:111-118. https://doi.org/10.1016/j.resconrec.2019.04.023 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.resconrec.2019.04.023 | es_ES |
dc.description.upvformatpinicio | 111 | es_ES |
dc.description.upvformatpfin | 118 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 147 | es_ES |
dc.relation.pasarela | S\406155 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Burguete, P., Corma, A., Hitzl, M., Modrego, R., Ponce, E., & Renz, M. (2016). Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chemistry, 18(4), 1051-1060. doi:10.1039/c5gc02296g | es_ES |
dc.description.references | Busch, D., Kammann, C., Grünhage, L., & Müller, C. (2012). Simple Biotoxicity Tests for Evaluation of Carbonaceous Soil Additives: Establishment and Reproducibility of Four Test Procedures. Journal of Environmental Quality, 41(4), 1023-1032. doi:10.2134/jeq2011.0122 | es_ES |
dc.description.references | Busch, D., Stark, A., Kammann, C. I., & Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicology and Environmental Safety, 97, 59-66. doi:10.1016/j.ecoenv.2013.07.003 | es_ES |
dc.description.references | Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. doi:10.1016/j.jiec.2016.06.002 | es_ES |
dc.description.references | Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of «no solid waste generation» and analytical methods. Journal of Cleaner Production, 142, 1728-1740. doi:10.1016/j.jclepro.2016.11.116 | es_ES |
dc.description.references | Dalias, P., Prasad, M., Mumme, J., Kern, J., Stylianou, M., & Christou, A. (2018). Low-cost post-treatments improve the efficacy of hydrochar as peat replacement in growing media. Journal of Environmental Chemical Engineering, 6(5), 6647-6652. doi:10.1016/j.jece.2018.10.042 | es_ES |
dc.description.references | Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., … Meesschaert, B. (2014). Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384. doi:10.1080/10643389.2013.866531 | es_ES |
dc.description.references | Fornes, F., & Belda, R. M. (2017). Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. Journal of Environmental Management, 191, 237-243. doi:10.1016/j.jenvman.2017.01.026 | es_ES |
dc.description.references | Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177. doi:10.1002/bbb.198 | es_ES |
dc.description.references | Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., … Pant, R. (2012). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683-697. doi:10.1007/s11367-012-0489-5 | es_ES |
dc.description.references | Hitzl, M., Corma, A., Pomares, F., & Renz, M. (2015). The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catalysis Today, 257, 154-159. doi:10.1016/j.cattod.2014.09.024 | es_ES |
dc.description.references | Hitzl, M., Mendez, A., Owsianiak, M., & Renz, M. (2018). Making hydrochar suitable for agricultural soil: A thermal treatment to remove organic phytotoxic compounds. Journal of Environmental Chemical Engineering, 6(6), 7029-7034. doi:10.1016/j.jece.2018.10.064 | es_ES |
dc.description.references | Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812 | es_ES |
dc.description.references | Idowu, I., Li, L., Flora, J. R. V., Pellechia, P. J., Darko, S. A., Ro, K. S., & Berge, N. D. (2017). Hydrothermal carbonization of food waste for nutrient recovery and reuse. Waste Management, 69, 480-491. doi:10.1016/j.wasman.2017.08.051 | es_ES |
dc.description.references | ILCD Handbook: General guide for Life Cycle Assessment - Detailed guidance, 2010. European Commission. | es_ES |
dc.description.references | Industrial Scale Hydrothermal Carbonization: new applications for wet biomass waste [WWW Document], 2016. URL http://www.newapp-project.eu/en/public-library/send/2-public-library/3-industrial-scale-hydrothermal-carbonization-new-applications-for-wet-biomass-waste.html (Accessed 26 April 2018). | es_ES |
dc.description.references | International Organization for Standardization, n.d. Solid biofuels - Fuel specifications and classes – Part 8: Graded thermally treated and densified biomass fuels (ISO/TS 17225-8:2016) [WWW Document]. 2016. URL https://www.iso.org/standard/71915.html (Accessed 27 April 2018). | es_ES |
dc.description.references | Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378. doi:10.1016/j.rser.2015.01.050 | es_ES |
dc.description.references | Kempegowda, R. S., Tran, K.-Q., & Skreiberg, Ø. (2017). Techno-economic assessment of integrated hydrochar and high-grade activated carbon production for electricity generation and storage. Energy Procedia, 120, 341-348. doi:10.1016/j.egypro.2017.07.223 | es_ES |
dc.description.references | Lang, Q., Zhang, B., Liu, Z., Jiao, W., Xia, Y., Chen, Z., … Gai, C. (2019). Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. Journal of Environmental Management, 233, 440-446. doi:10.1016/j.jenvman.2018.12.072 | es_ES |
dc.description.references | Melia, P. M., Cundy, A. B., Sohi, S. P., Hooda, P. S., & Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere, 186, 381-395. doi:10.1016/j.chemosphere.2017.07.089 | es_ES |
dc.description.references | New technological applications for wet biomass waste stream products [WWW Document], n.d. URL https://cordis.europa.eu/project/rcn/110741/factsheet/en. | es_ES |
dc.description.references | Ottosen, L. M., Kirkelund, G. M., & Jensen, P. E. (2013). Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere, 91(7), 963-969. doi:10.1016/j.chemosphere.2013.01.101 | es_ES |
dc.description.references | Owsianiak, M., Ryberg, M. W., Renz, M., Hitzl, M., & Hauschild, M. Z. (2016). Environmental Performance of Hydrothermal Carbonization of Four Wet Biomass Waste Streams at Industry-Relevant Scales. ACS Sustainable Chemistry & Engineering, 4(12), 6783-6791. doi:10.1021/acssuschemeng.6b01732 | es_ES |
dc.description.references | Owsianiak, M., Brooks, J., Renz, M., & Laurent, A. (2017). Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators. GCB Bioenergy, 10(4), 230-245. doi:10.1111/gcbb.12484 | es_ES |
dc.description.references | Smith, A. M., Whittaker, C., Shield, I., & Ross, A. B. (2018). The potential for production of high quality bio-coal from early harvested Miscanthus by hydrothermal carbonisation. Fuel, 220, 546-557. doi:10.1016/j.fuel.2018.01.143 | es_ES |
dc.description.references | Titirici, M. M., Thomas, A., Yu, S.-H., Müller, J.-O., & Antonietti, M. (2007). A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. Chemistry of Materials, 19(17), 4205-4212. doi:10.1021/cm0707408 | es_ES |
dc.description.references | Titirici, M.-M., White, R. J., Falco, C., & Sevilla, M. (2012). Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science, 5(5), 6796. doi:10.1039/c2ee21166a | es_ES |
dc.description.references | Wang, T., Zhai, Y., Zhu, Y., Gan, X., Zheng, L., Peng, C., … Zeng, G. (2018). Evaluation of the clean characteristics and combustion behavior of hydrochar derived from food waste towards solid biofuel production. Bioresource Technology, 266, 275-283. doi:10.1016/j.biortech.2018.06.093 | es_ES |
dc.description.references | Zhang, L., Zeng, G., Dong, H., Chen, Y., Zhang, J., Yan, M., … Huang, Z. (2017). The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen. Bioresource Technology, 230, 132-139. doi:10.1016/j.biortech.2017.01.032 | es_ES |
dc.description.references | Zhang, L., Zhang, J., Zeng, G., Dong, H., Chen, Y., Huang, C., … Fang, W. (2018). Multivariate relationships between microbial communities and environmental variables during co-composting of sewage sludge and agricultural waste in the presence of PVP-AgNPs. Bioresource Technology, 261, 10-18. doi:10.1016/j.biortech.2018.03.089 | es_ES |