- -

Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oliver-Tomás, Borja es_ES
dc.contributor.author Hitzl, Martin es_ES
dc.contributor.author Owsianiak, Mikolaj es_ES
dc.contributor.author Renz, Michael es_ES
dc.date.accessioned 2021-01-27T04:32:01Z
dc.date.available 2021-01-27T04:32:01Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 0921-3449 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159974
dc.description.abstract [EN] The organic fraction of municipal solid waste was identified as an alternative phosphorus resource: hydrothermal carbonization provided phosphorus-rich hydrochar. Two alternative valorization pathways can be considered for the latter: the use as a fertilizer or as solid fuel after phosphorus extraction. By means of life cycle assessment (LCA) the environmental impact of extracting phosphorus and using the hydrochar as solid fuel was evaluated. Therefore, in a first step, phosphorus extraction with nitric acid, hydrochloric acid and sulfuric acid was experimentally investigated on laboratory scale. Nitric acid proved to be the most suitable because it offered high extraction efficiency and improved solid fuel properties such as lower ash content and lower levels of chlorine and sulfur. In contrast, hydrochloric acid increased the chlorine content and sulfuric acid only replaced phosphate by sulfate, but did not reduce the ash content of hydrochar. Then phosphorus can be precipitated and used as fertilizer. Although technically feasible, LCA points out that the separate use of hydrochar and phosphorus represents an overall environmental burden for wide range of impact categories, including climate change and resource depletion. Therefore, other applications for phosphorus-rich hydrochars, like agriculture and horticulture, should be considered. es_ES
dc.description.sponsorship The authors are grateful for the financial support received from the Spanish Ministry of Economy and Competiveness under the RTC-2015-4017-3 of the state programme "Research, Development and Innovation Oriented to the Challenges of Society" es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Resources Conservation and Recycling es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Advanced hydrochar es_ES
dc.subject Low-ash solid fuel es_ES
dc.subject Phosphorus extraction es_ES
dc.subject Phosphorus fertilizer es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.resconrec.2019.04.023 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2015-4017-3Q2818002DC.VALENCIANA/ES/Producción de un hydrochar slurry (HCS) a partir de residuos vegetales procesándolos en la planta prototipo de Ingelia y refino del producto carbonizado/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2015-4017-3/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Oliver-Tomás, B.; Hitzl, M.; Owsianiak, M.; Renz, M. (2019). Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste. Resources Conservation and Recycling. 147:111-118. https://doi.org/10.1016/j.resconrec.2019.04.023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.resconrec.2019.04.023 es_ES
dc.description.upvformatpinicio 111 es_ES
dc.description.upvformatpfin 118 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 147 es_ES
dc.relation.pasarela S\406155 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Burguete, P., Corma, A., Hitzl, M., Modrego, R., Ponce, E., & Renz, M. (2016). Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chemistry, 18(4), 1051-1060. doi:10.1039/c5gc02296g es_ES
dc.description.references Busch, D., Kammann, C., Grünhage, L., & Müller, C. (2012). Simple Biotoxicity Tests for Evaluation of Carbonaceous Soil Additives: Establishment and Reproducibility of Four Test Procedures. Journal of Environmental Quality, 41(4), 1023-1032. doi:10.2134/jeq2011.0122 es_ES
dc.description.references Busch, D., Stark, A., Kammann, C. I., & Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicology and Environmental Safety, 97, 59-66. doi:10.1016/j.ecoenv.2013.07.003 es_ES
dc.description.references Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. doi:10.1016/j.jiec.2016.06.002 es_ES
dc.description.references Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of «no solid waste generation» and analytical methods. Journal of Cleaner Production, 142, 1728-1740. doi:10.1016/j.jclepro.2016.11.116 es_ES
dc.description.references Dalias, P., Prasad, M., Mumme, J., Kern, J., Stylianou, M., & Christou, A. (2018). Low-cost post-treatments improve the efficacy of hydrochar as peat replacement in growing media. Journal of Environmental Chemical Engineering, 6(5), 6647-6652. doi:10.1016/j.jece.2018.10.042 es_ES
dc.description.references Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., … Meesschaert, B. (2014). Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384. doi:10.1080/10643389.2013.866531 es_ES
dc.description.references Fornes, F., & Belda, R. M. (2017). Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. Journal of Environmental Management, 191, 237-243. doi:10.1016/j.jenvman.2017.01.026 es_ES
dc.description.references Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177. doi:10.1002/bbb.198 es_ES
dc.description.references Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., … Pant, R. (2012). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683-697. doi:10.1007/s11367-012-0489-5 es_ES
dc.description.references Hitzl, M., Corma, A., Pomares, F., & Renz, M. (2015). The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catalysis Today, 257, 154-159. doi:10.1016/j.cattod.2014.09.024 es_ES
dc.description.references Hitzl, M., Mendez, A., Owsianiak, M., & Renz, M. (2018). Making hydrochar suitable for agricultural soil: A thermal treatment to remove organic phytotoxic compounds. Journal of Environmental Chemical Engineering, 6(6), 7029-7034. doi:10.1016/j.jece.2018.10.064 es_ES
dc.description.references Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812 es_ES
dc.description.references Idowu, I., Li, L., Flora, J. R. V., Pellechia, P. J., Darko, S. A., Ro, K. S., & Berge, N. D. (2017). Hydrothermal carbonization of food waste for nutrient recovery and reuse. Waste Management, 69, 480-491. doi:10.1016/j.wasman.2017.08.051 es_ES
dc.description.references ILCD Handbook: General guide for Life Cycle Assessment - Detailed guidance, 2010. European Commission. es_ES
dc.description.references Industrial Scale Hydrothermal Carbonization: new applications for wet biomass waste [WWW Document], 2016. URL http://www.newapp-project.eu/en/public-library/send/2-public-library/3-industrial-scale-hydrothermal-carbonization-new-applications-for-wet-biomass-waste.html (Accessed 26 April 2018). es_ES
dc.description.references International Organization for Standardization, n.d. Solid biofuels - Fuel specifications and classes – Part 8: Graded thermally treated and densified biomass fuels (ISO/TS 17225-8:2016) [WWW Document]. 2016. URL https://www.iso.org/standard/71915.html (Accessed 27 April 2018). es_ES
dc.description.references Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378. doi:10.1016/j.rser.2015.01.050 es_ES
dc.description.references Kempegowda, R. S., Tran, K.-Q., & Skreiberg, Ø. (2017). Techno-economic assessment of integrated hydrochar and high-grade activated carbon production for electricity generation and storage. Energy Procedia, 120, 341-348. doi:10.1016/j.egypro.2017.07.223 es_ES
dc.description.references Lang, Q., Zhang, B., Liu, Z., Jiao, W., Xia, Y., Chen, Z., … Gai, C. (2019). Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. Journal of Environmental Management, 233, 440-446. doi:10.1016/j.jenvman.2018.12.072 es_ES
dc.description.references Melia, P. M., Cundy, A. B., Sohi, S. P., Hooda, P. S., & Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere, 186, 381-395. doi:10.1016/j.chemosphere.2017.07.089 es_ES
dc.description.references New technological applications for wet biomass waste stream products [WWW Document], n.d. URL https://cordis.europa.eu/project/rcn/110741/factsheet/en. es_ES
dc.description.references Ottosen, L. M., Kirkelund, G. M., & Jensen, P. E. (2013). Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere, 91(7), 963-969. doi:10.1016/j.chemosphere.2013.01.101 es_ES
dc.description.references Owsianiak, M., Ryberg, M. W., Renz, M., Hitzl, M., & Hauschild, M. Z. (2016). Environmental Performance of Hydrothermal Carbonization of Four Wet Biomass Waste Streams at Industry-Relevant Scales. ACS Sustainable Chemistry & Engineering, 4(12), 6783-6791. doi:10.1021/acssuschemeng.6b01732 es_ES
dc.description.references Owsianiak, M., Brooks, J., Renz, M., & Laurent, A. (2017). Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators. GCB Bioenergy, 10(4), 230-245. doi:10.1111/gcbb.12484 es_ES
dc.description.references Smith, A. M., Whittaker, C., Shield, I., & Ross, A. B. (2018). The potential for production of high quality bio-coal from early harvested Miscanthus by hydrothermal carbonisation. Fuel, 220, 546-557. doi:10.1016/j.fuel.2018.01.143 es_ES
dc.description.references Titirici, M. M., Thomas, A., Yu, S.-H., Müller, J.-O., & Antonietti, M. (2007). A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. Chemistry of Materials, 19(17), 4205-4212. doi:10.1021/cm0707408 es_ES
dc.description.references Titirici, M.-M., White, R. J., Falco, C., & Sevilla, M. (2012). Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science, 5(5), 6796. doi:10.1039/c2ee21166a es_ES
dc.description.references Wang, T., Zhai, Y., Zhu, Y., Gan, X., Zheng, L., Peng, C., … Zeng, G. (2018). Evaluation of the clean characteristics and combustion behavior of hydrochar derived from food waste towards solid biofuel production. Bioresource Technology, 266, 275-283. doi:10.1016/j.biortech.2018.06.093 es_ES
dc.description.references Zhang, L., Zeng, G., Dong, H., Chen, Y., Zhang, J., Yan, M., … Huang, Z. (2017). The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen. Bioresource Technology, 230, 132-139. doi:10.1016/j.biortech.2017.01.032 es_ES
dc.description.references Zhang, L., Zhang, J., Zeng, G., Dong, H., Chen, Y., Huang, C., … Fang, W. (2018). Multivariate relationships between microbial communities and environmental variables during co-composting of sewage sludge and agricultural waste in the presence of PVP-AgNPs. Bioresource Technology, 261, 10-18. doi:10.1016/j.biortech.2018.03.089 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem