- -

Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste

Mostrar el registro completo del ítem

Oliver-Tomás, B.; Hitzl, M.; Owsianiak, M.; Renz, M. (2019). Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste. Resources Conservation and Recycling. 147:111-118. https://doi.org/10.1016/j.resconrec.2019.04.023

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159974

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste
Autor: Oliver-Tomás, Borja Hitzl, Martin Owsianiak, Mikolaj Renz, Michael
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The organic fraction of municipal solid waste was identified as an alternative phosphorus resource: hydrothermal carbonization provided phosphorus-rich hydrochar. Two alternative valorization pathways can be considered ...[+]
Palabras clave: Advanced hydrochar , Low-ash solid fuel , Phosphorus extraction , Phosphorus fertilizer
Derechos de uso: Reserva de todos los derechos
Fuente:
Resources Conservation and Recycling. (issn: 0921-3449 )
DOI: 10.1016/j.resconrec.2019.04.023
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.resconrec.2019.04.023
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTC-2015-4017-3Q2818002DC.VALENCIANA/ES/Producción de un hydrochar slurry (HCS) a partir de residuos vegetales procesándolos en la planta prototipo de Ingelia y refino del producto carbonizado/
info:eu-repo/grantAgreement/MINECO//RTC-2015-4017-3/
Agradecimientos:
The authors are grateful for the financial support received from the Spanish Ministry of Economy and Competiveness under the RTC-2015-4017-3 of the state programme "Research, Development and Innovation Oriented to the ...[+]
Tipo: Artículo

References

Burguete, P., Corma, A., Hitzl, M., Modrego, R., Ponce, E., & Renz, M. (2016). Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chemistry, 18(4), 1051-1060. doi:10.1039/c5gc02296g

Busch, D., Kammann, C., Grünhage, L., & Müller, C. (2012). Simple Biotoxicity Tests for Evaluation of Carbonaceous Soil Additives: Establishment and Reproducibility of Four Test Procedures. Journal of Environmental Quality, 41(4), 1023-1032. doi:10.2134/jeq2011.0122

Busch, D., Stark, A., Kammann, C. I., & Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicology and Environmental Safety, 97, 59-66. doi:10.1016/j.ecoenv.2013.07.003 [+]
Burguete, P., Corma, A., Hitzl, M., Modrego, R., Ponce, E., & Renz, M. (2016). Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chemistry, 18(4), 1051-1060. doi:10.1039/c5gc02296g

Busch, D., Kammann, C., Grünhage, L., & Müller, C. (2012). Simple Biotoxicity Tests for Evaluation of Carbonaceous Soil Additives: Establishment and Reproducibility of Four Test Procedures. Journal of Environmental Quality, 41(4), 1023-1032. doi:10.2134/jeq2011.0122

Busch, D., Stark, A., Kammann, C. I., & Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicology and Environmental Safety, 97, 59-66. doi:10.1016/j.ecoenv.2013.07.003

Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. doi:10.1016/j.jiec.2016.06.002

Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of «no solid waste generation» and analytical methods. Journal of Cleaner Production, 142, 1728-1740. doi:10.1016/j.jclepro.2016.11.116

Dalias, P., Prasad, M., Mumme, J., Kern, J., Stylianou, M., & Christou, A. (2018). Low-cost post-treatments improve the efficacy of hydrochar as peat replacement in growing media. Journal of Environmental Chemical Engineering, 6(5), 6647-6652. doi:10.1016/j.jece.2018.10.042

Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., … Meesschaert, B. (2014). Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384. doi:10.1080/10643389.2013.866531

Fornes, F., & Belda, R. M. (2017). Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. Journal of Environmental Management, 191, 237-243. doi:10.1016/j.jenvman.2017.01.026

Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177. doi:10.1002/bbb.198

Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., … Pant, R. (2012). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683-697. doi:10.1007/s11367-012-0489-5

Hitzl, M., Corma, A., Pomares, F., & Renz, M. (2015). The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catalysis Today, 257, 154-159. doi:10.1016/j.cattod.2014.09.024

Hitzl, M., Mendez, A., Owsianiak, M., & Renz, M. (2018). Making hydrochar suitable for agricultural soil: A thermal treatment to remove organic phytotoxic compounds. Journal of Environmental Chemical Engineering, 6(6), 7029-7034. doi:10.1016/j.jece.2018.10.064

Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812

Idowu, I., Li, L., Flora, J. R. V., Pellechia, P. J., Darko, S. A., Ro, K. S., & Berge, N. D. (2017). Hydrothermal carbonization of food waste for nutrient recovery and reuse. Waste Management, 69, 480-491. doi:10.1016/j.wasman.2017.08.051

ILCD Handbook: General guide for Life Cycle Assessment - Detailed guidance, 2010. European Commission.

Industrial Scale Hydrothermal Carbonization: new applications for wet biomass waste [WWW Document], 2016. URL http://www.newapp-project.eu/en/public-library/send/2-public-library/3-industrial-scale-hydrothermal-carbonization-new-applications-for-wet-biomass-waste.html (Accessed 26 April 2018).

International Organization for Standardization, n.d. Solid biofuels - Fuel specifications and classes – Part 8: Graded thermally treated and densified biomass fuels (ISO/TS 17225-8:2016) [WWW Document]. 2016. URL https://www.iso.org/standard/71915.html (Accessed 27 April 2018).

Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378. doi:10.1016/j.rser.2015.01.050

Kempegowda, R. S., Tran, K.-Q., & Skreiberg, Ø. (2017). Techno-economic assessment of integrated hydrochar and high-grade activated carbon production for electricity generation and storage. Energy Procedia, 120, 341-348. doi:10.1016/j.egypro.2017.07.223

Lang, Q., Zhang, B., Liu, Z., Jiao, W., Xia, Y., Chen, Z., … Gai, C. (2019). Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. Journal of Environmental Management, 233, 440-446. doi:10.1016/j.jenvman.2018.12.072

Melia, P. M., Cundy, A. B., Sohi, S. P., Hooda, P. S., & Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere, 186, 381-395. doi:10.1016/j.chemosphere.2017.07.089

New technological applications for wet biomass waste stream products [WWW Document], n.d. URL https://cordis.europa.eu/project/rcn/110741/factsheet/en.

Ottosen, L. M., Kirkelund, G. M., & Jensen, P. E. (2013). Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere, 91(7), 963-969. doi:10.1016/j.chemosphere.2013.01.101

Owsianiak, M., Ryberg, M. W., Renz, M., Hitzl, M., & Hauschild, M. Z. (2016). Environmental Performance of Hydrothermal Carbonization of Four Wet Biomass Waste Streams at Industry-Relevant Scales. ACS Sustainable Chemistry & Engineering, 4(12), 6783-6791. doi:10.1021/acssuschemeng.6b01732

Owsianiak, M., Brooks, J., Renz, M., & Laurent, A. (2017). Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators. GCB Bioenergy, 10(4), 230-245. doi:10.1111/gcbb.12484

Smith, A. M., Whittaker, C., Shield, I., & Ross, A. B. (2018). The potential for production of high quality bio-coal from early harvested Miscanthus by hydrothermal carbonisation. Fuel, 220, 546-557. doi:10.1016/j.fuel.2018.01.143

Titirici, M. M., Thomas, A., Yu, S.-H., Müller, J.-O., & Antonietti, M. (2007). A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. Chemistry of Materials, 19(17), 4205-4212. doi:10.1021/cm0707408

Titirici, M.-M., White, R. J., Falco, C., & Sevilla, M. (2012). Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science, 5(5), 6796. doi:10.1039/c2ee21166a

Wang, T., Zhai, Y., Zhu, Y., Gan, X., Zheng, L., Peng, C., … Zeng, G. (2018). Evaluation of the clean characteristics and combustion behavior of hydrochar derived from food waste towards solid biofuel production. Bioresource Technology, 266, 275-283. doi:10.1016/j.biortech.2018.06.093

Zhang, L., Zeng, G., Dong, H., Chen, Y., Zhang, J., Yan, M., … Huang, Z. (2017). The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen. Bioresource Technology, 230, 132-139. doi:10.1016/j.biortech.2017.01.032

Zhang, L., Zhang, J., Zeng, G., Dong, H., Chen, Y., Huang, C., … Fang, W. (2018). Multivariate relationships between microbial communities and environmental variables during co-composting of sewage sludge and agricultural waste in the presence of PVP-AgNPs. Bioresource Technology, 261, 10-18. doi:10.1016/j.biortech.2018.03.089

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem