Mostrar el registro sencillo del ítem
dc.contributor.author | Collazo-Bigliardi, Sofía | es_ES |
dc.contributor.author | Ortega-Toro, Rodrigo | es_ES |
dc.contributor.author | Chiralt, A. | es_ES |
dc.date.accessioned | 2021-01-27T04:32:24Z | |
dc.date.available | 2021-01-27T04:32:24Z | |
dc.date.issued | 2019-09 | es_ES |
dc.identifier.issn | 1381-5148 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159983 | |
dc.description.abstract | [EN] Thermoplastic starch (S) and polylactic acid (PLA) blend films were obtained by melt blending and compression moulding using grafted polycaprolactone with maleic anhydride and/or glycidyl methacrylate (PCLMG or PCLG) as compatibilizers. The effect of both the PLA ratio in the blend (20 and 40% with respect to starch) and the amount of both compatibilizers (2.5 and 5%) on the film properties was analysed. Compatibilized blends presented a better dispersion of the PLA in the continuous starch phase, but the use of PCLG provoked a phase inversion in the matrix when 40% of the starch was substituted by PLA. The compatibilized blend films exhibited higher values of elastic modulus than pure starch films, but were less extensible. The use of compatibilizers did not affect the film's water vapour permeability, which was reduced by up to 33 or 50% for 20 and 40% PLA, respectively, although inverted films with 40% PLA and 5% PCLG exhibited marked reduction (67%). Compatibilizers decreased the oxygen permeability of the films by about 50%, regardless of the ratio of PLA and the kind and amount of compatibilizer. Therefore, substituting 20% of the starch by PLA and incorporating 5% of PCLG would be a good strategy to obtain films useful for food packaging. | es_ES |
dc.description.sponsorship | The authors thank the Ministerio de Economia y Competitividad (Spain) for the financial support provided through Project AGL2016-76699-R. The authors also wish to thank the Electron Microscopy Service of the UPV for their technical assistance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Reactive and Functional Polymers | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Starch | es_ES |
dc.subject | Polylactic acid | es_ES |
dc.subject | Grafted polycaprolactone | es_ES |
dc.subject | Compatibilizers | es_ES |
dc.subject | Blend films | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.reactfunctpolym.2019.05.013 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.description.bibliographicCitation | Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. (2019). Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends. Reactive and Functional Polymers. 142:25-35. https://doi.org/10.1016/j.reactfunctpolym.2019.05.013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.reactfunctpolym.2019.05.013 | es_ES |
dc.description.upvformatpinicio | 25 | es_ES |
dc.description.upvformatpfin | 35 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 142 | es_ES |
dc.relation.pasarela | S\409776 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. doi:10.1016/j.fpsl.2015.04.001 | es_ES |
dc.description.references | Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191, 205-215. doi:10.1016/j.carbpol.2018.03.022 | es_ES |
dc.description.references | Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952 | es_ES |
dc.description.references | Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003 | es_ES |
dc.description.references | Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019 | es_ES |
dc.description.references | Müller, P., Bere, J., Fekete, E., Móczó, J., Nagy, B., Kállay, M., … Pukánszky, B. (2016). Interactions, structure and properties in PLA/plasticized starch blends. Polymer, 103, 9-18. doi:10.1016/j.polymer.2016.09.031 | es_ES |
dc.description.references | Le Bolay, N., Lamure, A., Gallego Leis, N., & Subhani, A. (2012). How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of Renewable PLA–starch composites. Chemical Engineering and Processing: Process Intensification, 56, 1-9. doi:10.1016/j.cep.2012.03.005 | es_ES |
dc.description.references | Ortega-Toro, R., Santagata, G., Gomez d’Ayala, G., Cerruti, P., Talens Oliag, P., Chiralt Boix, M. A., & Malinconico, M. (2016). Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone). Carbohydrate Polymers, 147, 16-27. doi:10.1016/j.carbpol.2016.03.070 | es_ES |
dc.description.references | Laurienzo, P., Malinconico, M., Mattia, G., & Romano, G. (2006). Synthesis and Characterization of Functionalized Crosslinkable Poly(ɛ-caprolactone). Macromolecular Chemistry and Physics, 207(20), 1861-1869. doi:10.1002/macp.200600262 | es_ES |
dc.description.references | Imre, B., García, L., Puglia, D., & Vilaplana, F. (2019). Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, 209, 20-37. doi:10.1016/j.carbpol.2018.12.082 | es_ES |
dc.description.references | McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x | es_ES |
dc.description.references | Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035 | es_ES |
dc.description.references | Haque, M. M.-U., Errico, M. E., Gentile, G., Avella, M., & Pracella, M. (2012). Functionalization and Compatibilization of Poly(ε -caprolactone) Composites with Cellulose Microfibres: Morphology, Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 297(10), 985-993. doi:10.1002/mame.201100414 | es_ES |
dc.description.references | Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309 | es_ES |
dc.description.references | Castillo, L., López, O., López, C., Zaritzky, N., García, M. A., Barbosa, S., & Villar, M. (2013). Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95(2), 664-674. doi:10.1016/j.carbpol.2013.03.026 | es_ES |
dc.description.references | Davachi, S. M., Shiroud Heidari, B., Hejazi, I., Seyfi, J., Oliaei, E., Farzaneh, A., & Rashedi, H. (2017). Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydrate Polymers, 155, 336-344. doi:10.1016/j.carbpol.2016.08.037 | es_ES |
dc.description.references | López, O. V., Castillo, L. A., Barbosa, S. E., Villar, M. A., & Alejandra García, M. (2016). Processing-properties-applications relationship of nanocomposites based on thermoplastic corn starch and talc. Polymer Composites, 39(4), 1331-1338. doi:10.1002/pc.24073 | es_ES |
dc.description.references | Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051 | es_ES |
dc.description.references | Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158-169. doi:10.1016/j.foodhyd.2017.12.021 | es_ES |
dc.description.references | Mikus, P.-Y., Alix, S., Soulestin, J., Lacrampe, M. F., Krawczak, P., Coqueret, X., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450-457. doi:10.1016/j.carbpol.2014.06.087 | es_ES |
dc.description.references | Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059 | es_ES |
dc.description.references | Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174-180. doi:10.1016/j.ijbiomac.2013.11.026 | es_ES |
dc.description.references | Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. Journal of Renewable Materials, 6(7), 599-610. doi:10.32604/jrm.2018.00127 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |