- -

Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Collazo-Bigliardi, Sofía es_ES
dc.contributor.author Ortega-Toro, Rodrigo es_ES
dc.contributor.author Chiralt, A. es_ES
dc.date.accessioned 2021-01-27T04:32:24Z
dc.date.available 2021-01-27T04:32:24Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 1381-5148 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159983
dc.description.abstract [EN] Thermoplastic starch (S) and polylactic acid (PLA) blend films were obtained by melt blending and compression moulding using grafted polycaprolactone with maleic anhydride and/or glycidyl methacrylate (PCLMG or PCLG) as compatibilizers. The effect of both the PLA ratio in the blend (20 and 40% with respect to starch) and the amount of both compatibilizers (2.5 and 5%) on the film properties was analysed. Compatibilized blends presented a better dispersion of the PLA in the continuous starch phase, but the use of PCLG provoked a phase inversion in the matrix when 40% of the starch was substituted by PLA. The compatibilized blend films exhibited higher values of elastic modulus than pure starch films, but were less extensible. The use of compatibilizers did not affect the film's water vapour permeability, which was reduced by up to 33 or 50% for 20 and 40% PLA, respectively, although inverted films with 40% PLA and 5% PCLG exhibited marked reduction (67%). Compatibilizers decreased the oxygen permeability of the films by about 50%, regardless of the ratio of PLA and the kind and amount of compatibilizer. Therefore, substituting 20% of the starch by PLA and incorporating 5% of PCLG would be a good strategy to obtain films useful for food packaging. es_ES
dc.description.sponsorship The authors thank the Ministerio de Economia y Competitividad (Spain) for the financial support provided through Project AGL2016-76699-R. The authors also wish to thank the Electron Microscopy Service of the UPV for their technical assistance. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Reactive and Functional Polymers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Starch es_ES
dc.subject Polylactic acid es_ES
dc.subject Grafted polycaprolactone es_ES
dc.subject Compatibilizers es_ES
dc.subject Blend films es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.reactfunctpolym.2019.05.013 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. (2019). Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends. Reactive and Functional Polymers. 142:25-35. https://doi.org/10.1016/j.reactfunctpolym.2019.05.013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.reactfunctpolym.2019.05.013 es_ES
dc.description.upvformatpinicio 25 es_ES
dc.description.upvformatpfin 35 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 142 es_ES
dc.relation.pasarela S\409776 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. doi:10.1016/j.fpsl.2015.04.001 es_ES
dc.description.references Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191, 205-215. doi:10.1016/j.carbpol.2018.03.022 es_ES
dc.description.references Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952 es_ES
dc.description.references Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003 es_ES
dc.description.references Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019 es_ES
dc.description.references Müller, P., Bere, J., Fekete, E., Móczó, J., Nagy, B., Kállay, M., … Pukánszky, B. (2016). Interactions, structure and properties in PLA/plasticized starch blends. Polymer, 103, 9-18. doi:10.1016/j.polymer.2016.09.031 es_ES
dc.description.references Le Bolay, N., Lamure, A., Gallego Leis, N., & Subhani, A. (2012). How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of Renewable PLA–starch composites. Chemical Engineering and Processing: Process Intensification, 56, 1-9. doi:10.1016/j.cep.2012.03.005 es_ES
dc.description.references Ortega-Toro, R., Santagata, G., Gomez d’Ayala, G., Cerruti, P., Talens Oliag, P., Chiralt Boix, M. A., & Malinconico, M. (2016). Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone). Carbohydrate Polymers, 147, 16-27. doi:10.1016/j.carbpol.2016.03.070 es_ES
dc.description.references Laurienzo, P., Malinconico, M., Mattia, G., & Romano, G. (2006). Synthesis and Characterization of Functionalized Crosslinkable Poly(ɛ-caprolactone). Macromolecular Chemistry and Physics, 207(20), 1861-1869. doi:10.1002/macp.200600262 es_ES
dc.description.references Imre, B., García, L., Puglia, D., & Vilaplana, F. (2019). Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, 209, 20-37. doi:10.1016/j.carbpol.2018.12.082 es_ES
dc.description.references McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x es_ES
dc.description.references Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035 es_ES
dc.description.references Haque, M. M.-U., Errico, M. E., Gentile, G., Avella, M., & Pracella, M. (2012). Functionalization and Compatibilization of Poly(ε -caprolactone) Composites with Cellulose Microfibres: Morphology, Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 297(10), 985-993. doi:10.1002/mame.201100414 es_ES
dc.description.references Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309 es_ES
dc.description.references Castillo, L., López, O., López, C., Zaritzky, N., García, M. A., Barbosa, S., & Villar, M. (2013). Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95(2), 664-674. doi:10.1016/j.carbpol.2013.03.026 es_ES
dc.description.references Davachi, S. M., Shiroud Heidari, B., Hejazi, I., Seyfi, J., Oliaei, E., Farzaneh, A., & Rashedi, H. (2017). Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydrate Polymers, 155, 336-344. doi:10.1016/j.carbpol.2016.08.037 es_ES
dc.description.references López, O. V., Castillo, L. A., Barbosa, S. E., Villar, M. A., & Alejandra García, M. (2016). Processing-properties-applications relationship of nanocomposites based on thermoplastic corn starch and talc. Polymer Composites, 39(4), 1331-1338. doi:10.1002/pc.24073 es_ES
dc.description.references Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051 es_ES
dc.description.references Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158-169. doi:10.1016/j.foodhyd.2017.12.021 es_ES
dc.description.references Mikus, P.-Y., Alix, S., Soulestin, J., Lacrampe, M. F., Krawczak, P., Coqueret, X., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450-457. doi:10.1016/j.carbpol.2014.06.087 es_ES
dc.description.references Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059 es_ES
dc.description.references Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174-180. doi:10.1016/j.ijbiomac.2013.11.026 es_ES
dc.description.references Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. Journal of Renewable Materials, 6(7), 599-610. doi:10.32604/jrm.2018.00127 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem