- -

Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends

Mostrar el registro completo del ítem

Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. (2019). Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends. Reactive and Functional Polymers. 142:25-35. https://doi.org/10.1016/j.reactfunctpolym.2019.05.013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159983

Ficheros en el ítem

Metadatos del ítem

Título: Using grafted poly(epsilon-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends
Autor: Collazo-Bigliardi, Sofía Ortega-Toro, Rodrigo Chiralt, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] Thermoplastic starch (S) and polylactic acid (PLA) blend films were obtained by melt blending and compression moulding using grafted polycaprolactone with maleic anhydride and/or glycidyl methacrylate (PCLMG or PCLG) ...[+]
Palabras clave: Starch , Polylactic acid , Grafted polycaprolactone , Compatibilizers , Blend films
Derechos de uso: Reserva de todos los derechos
Fuente:
Reactive and Functional Polymers. (issn: 1381-5148 )
DOI: 10.1016/j.reactfunctpolym.2019.05.013
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.reactfunctpolym.2019.05.013
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/
Agradecimientos:
The authors thank the Ministerio de Economia y Competitividad (Spain) for the financial support provided through Project AGL2016-76699-R. The authors also wish to thank the Electron Microscopy Service of the UPV for their ...[+]
Tipo: Artículo

References

Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. doi:10.1016/j.fpsl.2015.04.001

Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191, 205-215. doi:10.1016/j.carbpol.2018.03.022

Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952 [+]
Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. doi:10.1016/j.fpsl.2015.04.001

Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191, 205-215. doi:10.1016/j.carbpol.2018.03.022

Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952

Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003

Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019

Müller, P., Bere, J., Fekete, E., Móczó, J., Nagy, B., Kállay, M., … Pukánszky, B. (2016). Interactions, structure and properties in PLA/plasticized starch blends. Polymer, 103, 9-18. doi:10.1016/j.polymer.2016.09.031

Le Bolay, N., Lamure, A., Gallego Leis, N., & Subhani, A. (2012). How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of Renewable PLA–starch composites. Chemical Engineering and Processing: Process Intensification, 56, 1-9. doi:10.1016/j.cep.2012.03.005

Ortega-Toro, R., Santagata, G., Gomez d’Ayala, G., Cerruti, P., Talens Oliag, P., Chiralt Boix, M. A., & Malinconico, M. (2016). Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone). Carbohydrate Polymers, 147, 16-27. doi:10.1016/j.carbpol.2016.03.070

Laurienzo, P., Malinconico, M., Mattia, G., & Romano, G. (2006). Synthesis and Characterization of Functionalized Crosslinkable Poly(ɛ-caprolactone). Macromolecular Chemistry and Physics, 207(20), 1861-1869. doi:10.1002/macp.200600262

Imre, B., García, L., Puglia, D., & Vilaplana, F. (2019). Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, 209, 20-37. doi:10.1016/j.carbpol.2018.12.082

McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x

Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035

Haque, M. M.-U., Errico, M. E., Gentile, G., Avella, M., & Pracella, M. (2012). Functionalization and Compatibilization of Poly(ε -caprolactone) Composites with Cellulose Microfibres: Morphology, Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 297(10), 985-993. doi:10.1002/mame.201100414

Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309

Castillo, L., López, O., López, C., Zaritzky, N., García, M. A., Barbosa, S., & Villar, M. (2013). Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95(2), 664-674. doi:10.1016/j.carbpol.2013.03.026

Davachi, S. M., Shiroud Heidari, B., Hejazi, I., Seyfi, J., Oliaei, E., Farzaneh, A., & Rashedi, H. (2017). Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydrate Polymers, 155, 336-344. doi:10.1016/j.carbpol.2016.08.037

López, O. V., Castillo, L. A., Barbosa, S. E., Villar, M. A., & Alejandra García, M. (2016). Processing-properties-applications relationship of nanocomposites based on thermoplastic corn starch and talc. Polymer Composites, 39(4), 1331-1338. doi:10.1002/pc.24073

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051

Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158-169. doi:10.1016/j.foodhyd.2017.12.021

Mikus, P.-Y., Alix, S., Soulestin, J., Lacrampe, M. F., Krawczak, P., Coqueret, X., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450-457. doi:10.1016/j.carbpol.2014.06.087

Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059

Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174-180. doi:10.1016/j.ijbiomac.2013.11.026

Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. Journal of Renewable Materials, 6(7), 599-610. doi:10.32604/jrm.2018.00127

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem