- -

Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus

Mostrar el registro completo del ítem

Shi, X.; Cordero, T.; Garrigues, S.; Marcos, JF.; Daròs, J.; Coca, M. (2019). Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. Plant Biotechnology Journal. 17(6):1069-1080. https://doi.org/10.1111/pbi.13038

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159995

Ficheros en el ítem

Metadatos del ítem

Título: Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus
Autor: Shi, Xiaoqing Cordero, Teresa Garrigues, Sandra Marcos, Jose F. Daròs, José-Antonio Coca, María
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop ...[+]
Palabras clave: Antifungal proteins , Gibson assembly , Nicotiana benthamiana , Plant biofactory , Tobacco mosaic virus , Viral vector
Derechos de uso: Reconocimiento (by)
Fuente:
Plant Biotechnology Journal. (issn: 1467-7644 )
DOI: 10.1111/pbi.13038
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/pbi.13038
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIO2015-68790-C2-1-R/ES/NUEVAS PROTEINAS ANTIFUNGICAS DE HONGOS: PRODUCCION EN HONGOS FILAMENTOSOS Y CARACTERIZACION DE SU MECANISMO DE ACCION/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0533/ES/AGR-CONSORCI CSIC-IRTA-UAB CENTRE DE RECERCA EN AGRIGENOMICA (CRAG)/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/
info:eu-repo/grantAgreement/MINECO//BIO2015-68790-C2-2-R/ES/PLANTAS Y LEVADURAS COMO BIOFACTORIAS DE NUEVAS PROTEINAS Y PEPTIDOS ANTIFUNGICOS/
Agradecimientos:
This work was supported by grants BIO2017-83184-R, BIO2015-68790-C2-1-R and BIO2015-68790-C2-2-R and through the 'Severo Ochoa Programme for Centres of Excellence in R&D' (SEV-2015-0533) from Spanish Ministerio de Ciencia, ...[+]
Tipo: Artículo

References

Batta, G., Barna, T., Gáspári, Z., Sándor, S., Kövér, K. E., Binder, U., … Marx, F. (2009). Functional aspects of the solution structure and dynamics of PAF - a highly-stable antifungal protein fromPenicillium chrysogenum. FEBS Journal, 276(10), 2875-2890. doi:10.1111/j.1742-4658.2009.07011.x

Bebber, D. P., & Gurr, S. J. (2015). Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology, 74, 62-64. doi:10.1016/j.fgb.2014.10.012

Bongomin, F., Gago, S., Oladele, R., & Denning, D. (2017). Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. Journal of Fungi, 3(4), 57. doi:10.3390/jof3040057 [+]
Batta, G., Barna, T., Gáspári, Z., Sándor, S., Kövér, K. E., Binder, U., … Marx, F. (2009). Functional aspects of the solution structure and dynamics of PAF - a highly-stable antifungal protein fromPenicillium chrysogenum. FEBS Journal, 276(10), 2875-2890. doi:10.1111/j.1742-4658.2009.07011.x

Bebber, D. P., & Gurr, S. J. (2015). Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology, 74, 62-64. doi:10.1016/j.fgb.2014.10.012

Bongomin, F., Gago, S., Oladele, R., & Denning, D. (2017). Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. Journal of Fungi, 3(4), 57. doi:10.3390/jof3040057

Bundó, M., Montesinos, L., Izquierdo, E., Campo, S., Mieulet, D., Guiderdoni, E., … Coca, M. (2014). Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biology, 14(1). doi:10.1186/1471-2229-14-102

Campos-Olivas, R., Bruix, M., Santoro, J., Lacadena, J., Martinez del Pozo, A., Gavilanes, J. G., & Rico, M. (1995). NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry, 34(9), 3009-3021. doi:10.1021/bi00009a032

Campoy, S., & Adrio, J. L. (2017). Antifungals. Biochemical Pharmacology, 133, 86-96. doi:10.1016/j.bcp.2016.11.019

Chahardoli, M., Fazeli, A., & Ghabooli, M. (2018). Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiology and Biochemistry, 123, 414-421. doi:10.1016/j.plaphy.2017.12.037

Chujo, T., Ishibashi, K., Miyashita, S., & Ishikawa, M. (2015). Functions of the 5′- and 3′-untranslated regions of tobamovirus RNA. Virus Research, 206, 82-89. doi:10.1016/j.virusres.2015.01.028

Coca, M., Bortolotti, C., Rufat, M., Peñas, G., Eritja, R., Tharreau, D., … San Segundo, B. (2004). Transgenic Rice Plants Expressing the Antifungal AFP Protein from Aspergillus Giganteus Show Enhanced Resistance to the Rice Blast Fungus Magnaporthe Grisea. Plant Molecular Biology, 54(2), 245-259. doi:10.1023/b:plan.0000028791.34706.80

Coca, M., Peñas, G., Gómez, J., Campo, S., Bortolotti, C., Messeguer, J., & Segundo, B. S. (2005). Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta, 223(3), 392-406. doi:10.1007/s00425-005-0069-z

Plant Viral Vectors 2014 Springer Berlin Heidelberg Berlin Heidelberg W.O. Dawson K. Palmer Y. Gleba A Personal History of Virus‐Based Vector Construction 1 18

DEAN, R., VAN KAN, J. A. L., PRETORIUS, Z. A., HAMMOND-KOSACK, K. E., DI PIETRO, A., SPANU, P. D., … FOSTER, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x

Donson, J., Kearney, C. M., Hilf, M. E., & Dawson, W. O. (1991). Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proceedings of the National Academy of Sciences, 88(16), 7204-7208. doi:10.1073/pnas.88.16.7204

Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186-194. doi:10.1038/nature10947

Fisher, M. C., Gow, N. A. R., & Gurr, S. J. (2016). Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20160332. doi:10.1098/rstb.2016.0332

Garrigues, S., Gandía, M., & Marcos, J. F. (2015). Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Applied Microbiology and Biotechnology, 100(5), 2243-2256. doi:10.1007/s00253-015-7110-3

Garrigues, S., Gandía, M., Castillo, L., Coca, M., Marx, F., Marcos, J. F., & Manzanares, P. (2018). Three Antifungal Proteins From Penicillium expansum: Different Patterns of Production and Antifungal Activity. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02370

Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318

Girgi, M., Breese, W. A., Lörz, H., & Oldach, K. H. (2006). Rust and Downy Mildew Resistance in Pearl Millet (Pennisetum glaucum) Mediated by Heterologous Expression of the afp Gene from Aspergillus giganteus. Transgenic Research, 15(3), 313-324. doi:10.1007/s11248-006-0001-8

Hahn, S., Giritch, A., Bartels, D., Bortesi, L., & Gleba, Y. (2014). A novel and fully scalableAgrobacteriumspray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. Plant Biotechnology Journal, 13(5), 708-716. doi:10.1111/pbi.12299

Hefferon, K. (2017). Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines, 5(4), 44. doi:10.3390/biomedicines5030044

Hegedüs, N., & Marx, F. (2013). Antifungal proteins: More than antimicrobials? Fungal Biology Reviews, 26(4), 132-145. doi:10.1016/j.fbr.2012.07.002

Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160

Huber, A., Hajdu, D., Bratschun-Khan, D., Gáspári, Z., Varbanov, M., Philippot, S., … Batta, G. (2018). New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Scientific Reports, 8(1). doi:10.1038/s41598-018-20002-2

Ishibashi, K., & Ishikawa, M. (2016). Replication of Tobamovirus RNA. Annual Review of Phytopathology, 54(1), 55-78. doi:10.1146/annurev-phyto-080615-100217

Kagale, S., Uzuhashi, S., Wigness, M., Bender, T., Yang, W., Borhan, M. H., & Rozwadowski, K. (2012). TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Scientific Reports, 2(1). doi:10.1038/srep00874

Kearney, C. M., Donson, J., Jones, G. E., & Dawson, W. O. (1993). Low Level of Genetic Drift in Foreign Sequences Replicating in an RNA Virus in Plants. Virology, 192(1), 11-17. doi:10.1006/viro.1993.1002

Kiedzierska, A., Czepczynska, H., Smietana, K., & Otlewski, J. (2008). Expression, purification and crystallization of cysteine-rich human protein muskelin in Escherichia coli. Protein Expression and Purification, 60(1), 82-88. doi:10.1016/j.pep.2008.03.019

Knapp, E., & Lewandowski, D. J. (2001). Tobacco mosaic virus, not just a single component virus anymore. Molecular Plant Pathology, 2(3), 117-123. doi:10.1046/j.1364-3703.2001.00064.x

Lee, S.-B., Li, B., Jin, S., & Daniell, H. (2010). Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnology Journal, 9(1), 100-115. doi:10.1111/j.1467-7652.2010.00538.x

Lindbo, J. A. (2007). TRBO: A High-Efficiency Tobacco Mosaic Virus RNA-Based Overexpression Vector. Plant Physiology, 145(4), 1232-1240. doi:10.1104/pp.107.106377

López-García, B., Moreno, A. B., San Segundo, B., De los Ríos, V., Manning, J. M., Gavilanes, J. G., & Martínez-del-Pozo, Á. (2010). Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expression and Purification, 70(2), 206-210. doi:10.1016/j.pep.2009.11.002

Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23(6), 718-723. doi:10.1038/nbt1094

Marx, F., Binder, U., Leiter, É., & Pócsi, I. (2007). The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cellular and Molecular Life Sciences, 65(3), 445-454. doi:10.1007/s00018-007-7364-8

Meyer, V. (2008). A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Applied Microbiology and Biotechnology, 78(1), 17-28. doi:10.1007/s00253-007-1291-3

Montesinos, L., Bundó, M., Izquierdo, E., Campo, S., Badosa, E., Rossignol, M., … Coca, M. (2016). Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies. PLOS ONE, 11(1), e0146919. doi:10.1371/journal.pone.0146919

Montesinos, L., Bundó, M., Badosa, E., San Segundo, B., Coca, M., & Montesinos, E. (2017). Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1011-9

Moreno, A. B., Peñas, G., Rufat, M., Bravo, J. M., Estopà, M., Messeguer, J., & San Segundo, B. (2005). Pathogen-Induced Production of the Antifungal AFP Protein from Aspergillus giganteus Confers Resistance to the Blast Fungus Magnaporthe grisea in Transgenic Rice. Molecular Plant-Microbe Interactions®, 18(9), 960-972. doi:10.1094/mpmi-18-0960

Moreno, A. B., Martínez del Pozo, Á., & San Segundo, B. (2006). Biotechnologically relevant enzymes and proteins. Applied Microbiology and Biotechnology, 72(5), 883-895. doi:10.1007/s00253-006-0362-1

Neuhaus, J. M., Sticher, L., Meins, F., & Boller, T. (1991). A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proceedings of the National Academy of Sciences, 88(22), 10362-10366. doi:10.1073/pnas.88.22.10362

Oldach, K. H., Becker, D., & Lörz, H. (2001). Heterologous Expression of Genes Mediating Enhanced Fungal Resistance in Transgenic Wheat. Molecular Plant-Microbe Interactions®, 14(7), 832-838. doi:10.1094/mpmi.2001.14.7.832

Patiño-Rodríguez, O., Ortega-Berlanga, B., Llamas-González, Y. Y., Flores-Valdez, M. A., Herrera-Díaz, A., Montes-de-Oca-Luna, R., … Alpuche-Solís, Á. G. (2013). Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell, Tissue and Organ Culture (PCTOC), 115(1), 99-106. doi:10.1007/s11240-013-0344-9

Perfect, J. R. (2016). «Is there an emerging need for new antifungals?» Expert Opinion on Emerging Drugs, 21(2), 129-131. doi:10.1517/14728214.2016.1155554

Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00172

Scholthof, K.-B. G. (2004). TOBACCO MOSAIC VIRUS: A Model System for Plant Biology. Annual Review of Phytopathology, 42(1), 13-34. doi:10.1146/annurev.phyto.42.040803.140322

Shivprasad, S., Pogue, G. P., Lewandowski, D. J., Hidalgo, J., Donson, J., Grill, L. K., & Dawson, W. O. (1999). Heterologous Sequences Greatly Affect Foreign Gene Expression in Tobacco Mosaic Virus-Based Vectors. Virology, 255(2), 312-323. doi:10.1006/viro.1998.9579

Sonderegger, C., Galgóczy, L., Garrigues, S., Fizil, Á., Borics, A., Manzanares, P., … Marx, F. (2016). A Penicillium chrysogenum-based expression system for the production of small, cysteine-rich antifungal proteins for structural and functional analyses. Microbial Cell Factories, 15(1). doi:10.1186/s12934-016-0586-4

Szappanos, H., Szigeti, G. P., Pál, B., Rusznák, Z., Szűcs, G., Rajnavölgyi, É., … Csernoch, L. (2006). The antifungal protein AFP secreted by Aspergillus giganteus does not cause detrimental effects on certain mammalian cells. Peptides, 27(7), 1717-1725. doi:10.1016/j.peptides.2006.01.009

Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563

Tóth, L., Kele, Z., Borics, A., Nagy, L. G., Váradi, G., Virágh, M., … Galgóczy, L. (2016). NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express, 6(1). doi:10.1186/s13568-016-0250-8

Tóth, L., Váradi, G., Borics, A., Batta, G., Kele, Z., Vendrinszky, Á., … Galgóczy, L. (2018). Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2). Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.00393

Vila, L., Lacadena, V., Fontanet, P., del Pozo, A. M., & Segundo, B. S. (2001). A Protein from the Mold Aspergillus giganteus Is a Potent Inhibitor of Fungal Plant Pathogens. Molecular Plant-Microbe Interactions®, 14(11), 1327-1331. doi:10.1094/mpmi.2001.14.11.1327

Virágh, M., Vörös, D., Kele, Z., Kovács, L., Fizil, Á., Lakatos, G., … Galgóczy, L. (2014). Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expression and Purification, 94, 79-84. doi:10.1016/j.pep.2013.11.003

Zeitler, B., Bernhard, A., Meyer, H., Sattler, M., Koop, H.-U., & Lindermayr, C. (2012). Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Molecular Biology, 81(3), 259-272. doi:10.1007/s11103-012-9996-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem