- -

Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Shi, Xiaoqing es_ES
dc.contributor.author Cordero, Teresa es_ES
dc.contributor.author Garrigues, Sandra es_ES
dc.contributor.author Marcos, Jose F. es_ES
dc.contributor.author Daròs, José-Antonio es_ES
dc.contributor.author Coca, María es_ES
dc.date.accessioned 2021-01-27T04:32:49Z
dc.date.available 2021-01-27T04:32:49Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 1467-7644 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159995
dc.description.abstract [EN] Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy-to-use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market. es_ES
dc.description.sponsorship This work was supported by grants BIO2017-83184-R, BIO2015-68790-C2-1-R and BIO2015-68790-C2-2-R and through the 'Severo Ochoa Programme for Centres of Excellence in R&D' (SEV-2015-0533) from Spanish Ministerio de Ciencia, Innovacion y Universidades (co-financed FEDER funds) and by the CERCA Programme/Generalitat de Catalunya. We thank Laia Castillo for technical support. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Plant Biotechnology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Antifungal proteins es_ES
dc.subject Gibson assembly es_ES
dc.subject Nicotiana benthamiana es_ES
dc.subject Plant biofactory es_ES
dc.subject Tobacco mosaic virus es_ES
dc.subject Viral vector es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/pbi.13038 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2015-68790-C2-1-R/ES/NUEVAS PROTEINAS ANTIFUNGICAS DE HONGOS: PRODUCCION EN HONGOS FILAMENTOSOS Y CARACTERIZACION DE SU MECANISMO DE ACCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2015-0533/ES/AGR-CONSORCI CSIC-IRTA-UAB CENTRE DE RECERCA EN AGRIGENOMICA (CRAG)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2015-68790-C2-2-R/ES/PLANTAS Y LEVADURAS COMO BIOFACTORIAS DE NUEVAS PROTEINAS Y PEPTIDOS ANTIFUNGICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Shi, X.; Cordero, T.; Garrigues, S.; Marcos, JF.; Daròs, J.; Coca, M. (2019). Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. Plant Biotechnology Journal. 17(6):1069-1080. https://doi.org/10.1111/pbi.13038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/pbi.13038 es_ES
dc.description.upvformatpinicio 1069 es_ES
dc.description.upvformatpfin 1080 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 30521145 es_ES
dc.identifier.pmcid PMC6523586 es_ES
dc.relation.pasarela S\406643 es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Batta, G., Barna, T., Gáspári, Z., Sándor, S., Kövér, K. E., Binder, U., … Marx, F. (2009). Functional aspects of the solution structure and dynamics of PAF - a highly-stable antifungal protein fromPenicillium chrysogenum. FEBS Journal, 276(10), 2875-2890. doi:10.1111/j.1742-4658.2009.07011.x es_ES
dc.description.references Bebber, D. P., & Gurr, S. J. (2015). Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology, 74, 62-64. doi:10.1016/j.fgb.2014.10.012 es_ES
dc.description.references Bongomin, F., Gago, S., Oladele, R., & Denning, D. (2017). Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. Journal of Fungi, 3(4), 57. doi:10.3390/jof3040057 es_ES
dc.description.references Bundó, M., Montesinos, L., Izquierdo, E., Campo, S., Mieulet, D., Guiderdoni, E., … Coca, M. (2014). Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biology, 14(1). doi:10.1186/1471-2229-14-102 es_ES
dc.description.references Campos-Olivas, R., Bruix, M., Santoro, J., Lacadena, J., Martinez del Pozo, A., Gavilanes, J. G., & Rico, M. (1995). NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry, 34(9), 3009-3021. doi:10.1021/bi00009a032 es_ES
dc.description.references Campoy, S., & Adrio, J. L. (2017). Antifungals. Biochemical Pharmacology, 133, 86-96. doi:10.1016/j.bcp.2016.11.019 es_ES
dc.description.references Chahardoli, M., Fazeli, A., & Ghabooli, M. (2018). Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiology and Biochemistry, 123, 414-421. doi:10.1016/j.plaphy.2017.12.037 es_ES
dc.description.references Chujo, T., Ishibashi, K., Miyashita, S., & Ishikawa, M. (2015). Functions of the 5′- and 3′-untranslated regions of tobamovirus RNA. Virus Research, 206, 82-89. doi:10.1016/j.virusres.2015.01.028 es_ES
dc.description.references Coca, M., Bortolotti, C., Rufat, M., Peñas, G., Eritja, R., Tharreau, D., … San Segundo, B. (2004). Transgenic Rice Plants Expressing the Antifungal AFP Protein from Aspergillus Giganteus Show Enhanced Resistance to the Rice Blast Fungus Magnaporthe Grisea. Plant Molecular Biology, 54(2), 245-259. doi:10.1023/b:plan.0000028791.34706.80 es_ES
dc.description.references Coca, M., Peñas, G., Gómez, J., Campo, S., Bortolotti, C., Messeguer, J., & Segundo, B. S. (2005). Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta, 223(3), 392-406. doi:10.1007/s00425-005-0069-z es_ES
dc.description.references Plant Viral Vectors 2014 Springer Berlin Heidelberg Berlin Heidelberg W.O. Dawson K. Palmer Y. Gleba A Personal History of Virus‐Based Vector Construction 1 18 es_ES
dc.description.references DEAN, R., VAN KAN, J. A. L., PRETORIUS, Z. A., HAMMOND-KOSACK, K. E., DI PIETRO, A., SPANU, P. D., … FOSTER, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x es_ES
dc.description.references Donson, J., Kearney, C. M., Hilf, M. E., & Dawson, W. O. (1991). Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proceedings of the National Academy of Sciences, 88(16), 7204-7208. doi:10.1073/pnas.88.16.7204 es_ES
dc.description.references Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186-194. doi:10.1038/nature10947 es_ES
dc.description.references Fisher, M. C., Gow, N. A. R., & Gurr, S. J. (2016). Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20160332. doi:10.1098/rstb.2016.0332 es_ES
dc.description.references Garrigues, S., Gandía, M., & Marcos, J. F. (2015). Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Applied Microbiology and Biotechnology, 100(5), 2243-2256. doi:10.1007/s00253-015-7110-3 es_ES
dc.description.references Garrigues, S., Gandía, M., Castillo, L., Coca, M., Marx, F., Marcos, J. F., & Manzanares, P. (2018). Three Antifungal Proteins From Penicillium expansum: Different Patterns of Production and Antifungal Activity. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02370 es_ES
dc.description.references Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318 es_ES
dc.description.references Girgi, M., Breese, W. A., Lörz, H., & Oldach, K. H. (2006). Rust and Downy Mildew Resistance in Pearl Millet (Pennisetum glaucum) Mediated by Heterologous Expression of the afp Gene from Aspergillus giganteus. Transgenic Research, 15(3), 313-324. doi:10.1007/s11248-006-0001-8 es_ES
dc.description.references Hahn, S., Giritch, A., Bartels, D., Bortesi, L., & Gleba, Y. (2014). A novel and fully scalableAgrobacteriumspray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. Plant Biotechnology Journal, 13(5), 708-716. doi:10.1111/pbi.12299 es_ES
dc.description.references Hefferon, K. (2017). Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines, 5(4), 44. doi:10.3390/biomedicines5030044 es_ES
dc.description.references Hegedüs, N., & Marx, F. (2013). Antifungal proteins: More than antimicrobials? Fungal Biology Reviews, 26(4), 132-145. doi:10.1016/j.fbr.2012.07.002 es_ES
dc.description.references Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160 es_ES
dc.description.references Huber, A., Hajdu, D., Bratschun-Khan, D., Gáspári, Z., Varbanov, M., Philippot, S., … Batta, G. (2018). New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Scientific Reports, 8(1). doi:10.1038/s41598-018-20002-2 es_ES
dc.description.references Ishibashi, K., & Ishikawa, M. (2016). Replication of Tobamovirus RNA. Annual Review of Phytopathology, 54(1), 55-78. doi:10.1146/annurev-phyto-080615-100217 es_ES
dc.description.references Kagale, S., Uzuhashi, S., Wigness, M., Bender, T., Yang, W., Borhan, M. H., & Rozwadowski, K. (2012). TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Scientific Reports, 2(1). doi:10.1038/srep00874 es_ES
dc.description.references Kearney, C. M., Donson, J., Jones, G. E., & Dawson, W. O. (1993). Low Level of Genetic Drift in Foreign Sequences Replicating in an RNA Virus in Plants. Virology, 192(1), 11-17. doi:10.1006/viro.1993.1002 es_ES
dc.description.references Kiedzierska, A., Czepczynska, H., Smietana, K., & Otlewski, J. (2008). Expression, purification and crystallization of cysteine-rich human protein muskelin in Escherichia coli. Protein Expression and Purification, 60(1), 82-88. doi:10.1016/j.pep.2008.03.019 es_ES
dc.description.references Knapp, E., & Lewandowski, D. J. (2001). Tobacco mosaic virus, not just a single component virus anymore. Molecular Plant Pathology, 2(3), 117-123. doi:10.1046/j.1364-3703.2001.00064.x es_ES
dc.description.references Lee, S.-B., Li, B., Jin, S., & Daniell, H. (2010). Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnology Journal, 9(1), 100-115. doi:10.1111/j.1467-7652.2010.00538.x es_ES
dc.description.references Lindbo, J. A. (2007). TRBO: A High-Efficiency Tobacco Mosaic Virus RNA-Based Overexpression Vector. Plant Physiology, 145(4), 1232-1240. doi:10.1104/pp.107.106377 es_ES
dc.description.references López-García, B., Moreno, A. B., San Segundo, B., De los Ríos, V., Manning, J. M., Gavilanes, J. G., & Martínez-del-Pozo, Á. (2010). Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expression and Purification, 70(2), 206-210. doi:10.1016/j.pep.2009.11.002 es_ES
dc.description.references Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23(6), 718-723. doi:10.1038/nbt1094 es_ES
dc.description.references Marx, F., Binder, U., Leiter, É., & Pócsi, I. (2007). The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cellular and Molecular Life Sciences, 65(3), 445-454. doi:10.1007/s00018-007-7364-8 es_ES
dc.description.references Meyer, V. (2008). A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Applied Microbiology and Biotechnology, 78(1), 17-28. doi:10.1007/s00253-007-1291-3 es_ES
dc.description.references Montesinos, L., Bundó, M., Izquierdo, E., Campo, S., Badosa, E., Rossignol, M., … Coca, M. (2016). Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies. PLOS ONE, 11(1), e0146919. doi:10.1371/journal.pone.0146919 es_ES
dc.description.references Montesinos, L., Bundó, M., Badosa, E., San Segundo, B., Coca, M., & Montesinos, E. (2017). Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1011-9 es_ES
dc.description.references Moreno, A. B., Peñas, G., Rufat, M., Bravo, J. M., Estopà, M., Messeguer, J., & San Segundo, B. (2005). Pathogen-Induced Production of the Antifungal AFP Protein from Aspergillus giganteus Confers Resistance to the Blast Fungus Magnaporthe grisea in Transgenic Rice. Molecular Plant-Microbe Interactions®, 18(9), 960-972. doi:10.1094/mpmi-18-0960 es_ES
dc.description.references Moreno, A. B., Martínez del Pozo, Á., & San Segundo, B. (2006). Biotechnologically relevant enzymes and proteins. Applied Microbiology and Biotechnology, 72(5), 883-895. doi:10.1007/s00253-006-0362-1 es_ES
dc.description.references Neuhaus, J. M., Sticher, L., Meins, F., & Boller, T. (1991). A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proceedings of the National Academy of Sciences, 88(22), 10362-10366. doi:10.1073/pnas.88.22.10362 es_ES
dc.description.references Oldach, K. H., Becker, D., & Lörz, H. (2001). Heterologous Expression of Genes Mediating Enhanced Fungal Resistance in Transgenic Wheat. Molecular Plant-Microbe Interactions®, 14(7), 832-838. doi:10.1094/mpmi.2001.14.7.832 es_ES
dc.description.references Patiño-Rodríguez, O., Ortega-Berlanga, B., Llamas-González, Y. Y., Flores-Valdez, M. A., Herrera-Díaz, A., Montes-de-Oca-Luna, R., … Alpuche-Solís, Á. G. (2013). Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell, Tissue and Organ Culture (PCTOC), 115(1), 99-106. doi:10.1007/s11240-013-0344-9 es_ES
dc.description.references Perfect, J. R. (2016). «Is there an emerging need for new antifungals?» Expert Opinion on Emerging Drugs, 21(2), 129-131. doi:10.1517/14728214.2016.1155554 es_ES
dc.description.references Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00172 es_ES
dc.description.references Scholthof, K.-B. G. (2004). TOBACCO MOSAIC VIRUS: A Model System for Plant Biology. Annual Review of Phytopathology, 42(1), 13-34. doi:10.1146/annurev.phyto.42.040803.140322 es_ES
dc.description.references Shivprasad, S., Pogue, G. P., Lewandowski, D. J., Hidalgo, J., Donson, J., Grill, L. K., & Dawson, W. O. (1999). Heterologous Sequences Greatly Affect Foreign Gene Expression in Tobacco Mosaic Virus-Based Vectors. Virology, 255(2), 312-323. doi:10.1006/viro.1998.9579 es_ES
dc.description.references Sonderegger, C., Galgóczy, L., Garrigues, S., Fizil, Á., Borics, A., Manzanares, P., … Marx, F. (2016). A Penicillium chrysogenum-based expression system for the production of small, cysteine-rich antifungal proteins for structural and functional analyses. Microbial Cell Factories, 15(1). doi:10.1186/s12934-016-0586-4 es_ES
dc.description.references Szappanos, H., Szigeti, G. P., Pál, B., Rusznák, Z., Szűcs, G., Rajnavölgyi, É., … Csernoch, L. (2006). The antifungal protein AFP secreted by Aspergillus giganteus does not cause detrimental effects on certain mammalian cells. Peptides, 27(7), 1717-1725. doi:10.1016/j.peptides.2006.01.009 es_ES
dc.description.references Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563 es_ES
dc.description.references Tóth, L., Kele, Z., Borics, A., Nagy, L. G., Váradi, G., Virágh, M., … Galgóczy, L. (2016). NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express, 6(1). doi:10.1186/s13568-016-0250-8 es_ES
dc.description.references Tóth, L., Váradi, G., Borics, A., Batta, G., Kele, Z., Vendrinszky, Á., … Galgóczy, L. (2018). Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2). Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.00393 es_ES
dc.description.references Vila, L., Lacadena, V., Fontanet, P., del Pozo, A. M., & Segundo, B. S. (2001). A Protein from the Mold Aspergillus giganteus Is a Potent Inhibitor of Fungal Plant Pathogens. Molecular Plant-Microbe Interactions®, 14(11), 1327-1331. doi:10.1094/mpmi.2001.14.11.1327 es_ES
dc.description.references Virágh, M., Vörös, D., Kele, Z., Kovács, L., Fizil, Á., Lakatos, G., … Galgóczy, L. (2014). Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expression and Purification, 94, 79-84. doi:10.1016/j.pep.2013.11.003 es_ES
dc.description.references Zeitler, B., Bernhard, A., Meyer, H., Sattler, M., Koop, H.-U., & Lindermayr, C. (2012). Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Molecular Biology, 81(3), 259-272. doi:10.1007/s11103-012-9996-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem