Mostrar el registro sencillo del ítem
dc.contributor.author | Shi, Xiaoqing | es_ES |
dc.contributor.author | Cordero, Teresa | es_ES |
dc.contributor.author | Garrigues, Sandra | es_ES |
dc.contributor.author | Marcos, Jose F. | es_ES |
dc.contributor.author | Daròs, José-Antonio | es_ES |
dc.contributor.author | Coca, María | es_ES |
dc.date.accessioned | 2021-01-27T04:32:49Z | |
dc.date.available | 2021-01-27T04:32:49Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 1467-7644 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159995 | |
dc.description.abstract | [EN] Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy-to-use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market. | es_ES |
dc.description.sponsorship | This work was supported by grants BIO2017-83184-R, BIO2015-68790-C2-1-R and BIO2015-68790-C2-2-R and through the 'Severo Ochoa Programme for Centres of Excellence in R&D' (SEV-2015-0533) from Spanish Ministerio de Ciencia, Innovacion y Universidades (co-financed FEDER funds) and by the CERCA Programme/Generalitat de Catalunya. We thank Laia Castillo for technical support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Plant Biotechnology Journal | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Antifungal proteins | es_ES |
dc.subject | Gibson assembly | es_ES |
dc.subject | Nicotiana benthamiana | es_ES |
dc.subject | Plant biofactory | es_ES |
dc.subject | Tobacco mosaic virus | es_ES |
dc.subject | Viral vector | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/pbi.13038 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2015-68790-C2-1-R/ES/NUEVAS PROTEINAS ANTIFUNGICAS DE HONGOS: PRODUCCION EN HONGOS FILAMENTOSOS Y CARACTERIZACION DE SU MECANISMO DE ACCION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0533/ES/AGR-CONSORCI CSIC-IRTA-UAB CENTRE DE RECERCA EN AGRIGENOMICA (CRAG)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2015-68790-C2-2-R/ES/PLANTAS Y LEVADURAS COMO BIOFACTORIAS DE NUEVAS PROTEINAS Y PEPTIDOS ANTIFUNGICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Shi, X.; Cordero, T.; Garrigues, S.; Marcos, JF.; Daròs, J.; Coca, M. (2019). Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. Plant Biotechnology Journal. 17(6):1069-1080. https://doi.org/10.1111/pbi.13038 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/pbi.13038 | es_ES |
dc.description.upvformatpinicio | 1069 | es_ES |
dc.description.upvformatpfin | 1080 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 30521145 | es_ES |
dc.identifier.pmcid | PMC6523586 | es_ES |
dc.relation.pasarela | S\406643 | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Batta, G., Barna, T., Gáspári, Z., Sándor, S., Kövér, K. E., Binder, U., … Marx, F. (2009). Functional aspects of the solution structure and dynamics of PAF - a highly-stable antifungal protein fromPenicillium chrysogenum. FEBS Journal, 276(10), 2875-2890. doi:10.1111/j.1742-4658.2009.07011.x | es_ES |
dc.description.references | Bebber, D. P., & Gurr, S. J. (2015). Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genetics and Biology, 74, 62-64. doi:10.1016/j.fgb.2014.10.012 | es_ES |
dc.description.references | Bongomin, F., Gago, S., Oladele, R., & Denning, D. (2017). Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. Journal of Fungi, 3(4), 57. doi:10.3390/jof3040057 | es_ES |
dc.description.references | Bundó, M., Montesinos, L., Izquierdo, E., Campo, S., Mieulet, D., Guiderdoni, E., … Coca, M. (2014). Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biology, 14(1). doi:10.1186/1471-2229-14-102 | es_ES |
dc.description.references | Campos-Olivas, R., Bruix, M., Santoro, J., Lacadena, J., Martinez del Pozo, A., Gavilanes, J. G., & Rico, M. (1995). NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry, 34(9), 3009-3021. doi:10.1021/bi00009a032 | es_ES |
dc.description.references | Campoy, S., & Adrio, J. L. (2017). Antifungals. Biochemical Pharmacology, 133, 86-96. doi:10.1016/j.bcp.2016.11.019 | es_ES |
dc.description.references | Chahardoli, M., Fazeli, A., & Ghabooli, M. (2018). Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiology and Biochemistry, 123, 414-421. doi:10.1016/j.plaphy.2017.12.037 | es_ES |
dc.description.references | Chujo, T., Ishibashi, K., Miyashita, S., & Ishikawa, M. (2015). Functions of the 5′- and 3′-untranslated regions of tobamovirus RNA. Virus Research, 206, 82-89. doi:10.1016/j.virusres.2015.01.028 | es_ES |
dc.description.references | Coca, M., Bortolotti, C., Rufat, M., Peñas, G., Eritja, R., Tharreau, D., … San Segundo, B. (2004). Transgenic Rice Plants Expressing the Antifungal AFP Protein from Aspergillus Giganteus Show Enhanced Resistance to the Rice Blast Fungus Magnaporthe Grisea. Plant Molecular Biology, 54(2), 245-259. doi:10.1023/b:plan.0000028791.34706.80 | es_ES |
dc.description.references | Coca, M., Peñas, G., Gómez, J., Campo, S., Bortolotti, C., Messeguer, J., & Segundo, B. S. (2005). Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta, 223(3), 392-406. doi:10.1007/s00425-005-0069-z | es_ES |
dc.description.references | Plant Viral Vectors 2014 Springer Berlin Heidelberg Berlin Heidelberg W.O. Dawson K. Palmer Y. Gleba A Personal History of Virus‐Based Vector Construction 1 18 | es_ES |
dc.description.references | DEAN, R., VAN KAN, J. A. L., PRETORIUS, Z. A., HAMMOND-KOSACK, K. E., DI PIETRO, A., SPANU, P. D., … FOSTER, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x | es_ES |
dc.description.references | Donson, J., Kearney, C. M., Hilf, M. E., & Dawson, W. O. (1991). Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proceedings of the National Academy of Sciences, 88(16), 7204-7208. doi:10.1073/pnas.88.16.7204 | es_ES |
dc.description.references | Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186-194. doi:10.1038/nature10947 | es_ES |
dc.description.references | Fisher, M. C., Gow, N. A. R., & Gurr, S. J. (2016). Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20160332. doi:10.1098/rstb.2016.0332 | es_ES |
dc.description.references | Garrigues, S., Gandía, M., & Marcos, J. F. (2015). Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Applied Microbiology and Biotechnology, 100(5), 2243-2256. doi:10.1007/s00253-015-7110-3 | es_ES |
dc.description.references | Garrigues, S., Gandía, M., Castillo, L., Coca, M., Marx, F., Marcos, J. F., & Manzanares, P. (2018). Three Antifungal Proteins From Penicillium expansum: Different Patterns of Production and Antifungal Activity. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02370 | es_ES |
dc.description.references | Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318 | es_ES |
dc.description.references | Girgi, M., Breese, W. A., Lörz, H., & Oldach, K. H. (2006). Rust and Downy Mildew Resistance in Pearl Millet (Pennisetum glaucum) Mediated by Heterologous Expression of the afp Gene from Aspergillus giganteus. Transgenic Research, 15(3), 313-324. doi:10.1007/s11248-006-0001-8 | es_ES |
dc.description.references | Hahn, S., Giritch, A., Bartels, D., Bortesi, L., & Gleba, Y. (2014). A novel and fully scalableAgrobacteriumspray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. Plant Biotechnology Journal, 13(5), 708-716. doi:10.1111/pbi.12299 | es_ES |
dc.description.references | Hefferon, K. (2017). Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines, 5(4), 44. doi:10.3390/biomedicines5030044 | es_ES |
dc.description.references | Hegedüs, N., & Marx, F. (2013). Antifungal proteins: More than antimicrobials? Fungal Biology Reviews, 26(4), 132-145. doi:10.1016/j.fbr.2012.07.002 | es_ES |
dc.description.references | Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160 | es_ES |
dc.description.references | Huber, A., Hajdu, D., Bratschun-Khan, D., Gáspári, Z., Varbanov, M., Philippot, S., … Batta, G. (2018). New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Scientific Reports, 8(1). doi:10.1038/s41598-018-20002-2 | es_ES |
dc.description.references | Ishibashi, K., & Ishikawa, M. (2016). Replication of Tobamovirus RNA. Annual Review of Phytopathology, 54(1), 55-78. doi:10.1146/annurev-phyto-080615-100217 | es_ES |
dc.description.references | Kagale, S., Uzuhashi, S., Wigness, M., Bender, T., Yang, W., Borhan, M. H., & Rozwadowski, K. (2012). TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Scientific Reports, 2(1). doi:10.1038/srep00874 | es_ES |
dc.description.references | Kearney, C. M., Donson, J., Jones, G. E., & Dawson, W. O. (1993). Low Level of Genetic Drift in Foreign Sequences Replicating in an RNA Virus in Plants. Virology, 192(1), 11-17. doi:10.1006/viro.1993.1002 | es_ES |
dc.description.references | Kiedzierska, A., Czepczynska, H., Smietana, K., & Otlewski, J. (2008). Expression, purification and crystallization of cysteine-rich human protein muskelin in Escherichia coli. Protein Expression and Purification, 60(1), 82-88. doi:10.1016/j.pep.2008.03.019 | es_ES |
dc.description.references | Knapp, E., & Lewandowski, D. J. (2001). Tobacco mosaic virus, not just a single component virus anymore. Molecular Plant Pathology, 2(3), 117-123. doi:10.1046/j.1364-3703.2001.00064.x | es_ES |
dc.description.references | Lee, S.-B., Li, B., Jin, S., & Daniell, H. (2010). Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnology Journal, 9(1), 100-115. doi:10.1111/j.1467-7652.2010.00538.x | es_ES |
dc.description.references | Lindbo, J. A. (2007). TRBO: A High-Efficiency Tobacco Mosaic Virus RNA-Based Overexpression Vector. Plant Physiology, 145(4), 1232-1240. doi:10.1104/pp.107.106377 | es_ES |
dc.description.references | López-García, B., Moreno, A. B., San Segundo, B., De los Ríos, V., Manning, J. M., Gavilanes, J. G., & Martínez-del-Pozo, Á. (2010). Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expression and Purification, 70(2), 206-210. doi:10.1016/j.pep.2009.11.002 | es_ES |
dc.description.references | Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23(6), 718-723. doi:10.1038/nbt1094 | es_ES |
dc.description.references | Marx, F., Binder, U., Leiter, É., & Pócsi, I. (2007). The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cellular and Molecular Life Sciences, 65(3), 445-454. doi:10.1007/s00018-007-7364-8 | es_ES |
dc.description.references | Meyer, V. (2008). A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Applied Microbiology and Biotechnology, 78(1), 17-28. doi:10.1007/s00253-007-1291-3 | es_ES |
dc.description.references | Montesinos, L., Bundó, M., Izquierdo, E., Campo, S., Badosa, E., Rossignol, M., … Coca, M. (2016). Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies. PLOS ONE, 11(1), e0146919. doi:10.1371/journal.pone.0146919 | es_ES |
dc.description.references | Montesinos, L., Bundó, M., Badosa, E., San Segundo, B., Coca, M., & Montesinos, E. (2017). Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1011-9 | es_ES |
dc.description.references | Moreno, A. B., Peñas, G., Rufat, M., Bravo, J. M., Estopà, M., Messeguer, J., & San Segundo, B. (2005). Pathogen-Induced Production of the Antifungal AFP Protein from Aspergillus giganteus Confers Resistance to the Blast Fungus Magnaporthe grisea in Transgenic Rice. Molecular Plant-Microbe Interactions®, 18(9), 960-972. doi:10.1094/mpmi-18-0960 | es_ES |
dc.description.references | Moreno, A. B., Martínez del Pozo, Á., & San Segundo, B. (2006). Biotechnologically relevant enzymes and proteins. Applied Microbiology and Biotechnology, 72(5), 883-895. doi:10.1007/s00253-006-0362-1 | es_ES |
dc.description.references | Neuhaus, J. M., Sticher, L., Meins, F., & Boller, T. (1991). A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proceedings of the National Academy of Sciences, 88(22), 10362-10366. doi:10.1073/pnas.88.22.10362 | es_ES |
dc.description.references | Oldach, K. H., Becker, D., & Lörz, H. (2001). Heterologous Expression of Genes Mediating Enhanced Fungal Resistance in Transgenic Wheat. Molecular Plant-Microbe Interactions®, 14(7), 832-838. doi:10.1094/mpmi.2001.14.7.832 | es_ES |
dc.description.references | Patiño-Rodríguez, O., Ortega-Berlanga, B., Llamas-González, Y. Y., Flores-Valdez, M. A., Herrera-Díaz, A., Montes-de-Oca-Luna, R., … Alpuche-Solís, Á. G. (2013). Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell, Tissue and Organ Culture (PCTOC), 115(1), 99-106. doi:10.1007/s11240-013-0344-9 | es_ES |
dc.description.references | Perfect, J. R. (2016). «Is there an emerging need for new antifungals?» Expert Opinion on Emerging Drugs, 21(2), 129-131. doi:10.1517/14728214.2016.1155554 | es_ES |
dc.description.references | Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00172 | es_ES |
dc.description.references | Scholthof, K.-B. G. (2004). TOBACCO MOSAIC VIRUS: A Model System for Plant Biology. Annual Review of Phytopathology, 42(1), 13-34. doi:10.1146/annurev.phyto.42.040803.140322 | es_ES |
dc.description.references | Shivprasad, S., Pogue, G. P., Lewandowski, D. J., Hidalgo, J., Donson, J., Grill, L. K., & Dawson, W. O. (1999). Heterologous Sequences Greatly Affect Foreign Gene Expression in Tobacco Mosaic Virus-Based Vectors. Virology, 255(2), 312-323. doi:10.1006/viro.1998.9579 | es_ES |
dc.description.references | Sonderegger, C., Galgóczy, L., Garrigues, S., Fizil, Á., Borics, A., Manzanares, P., … Marx, F. (2016). A Penicillium chrysogenum-based expression system for the production of small, cysteine-rich antifungal proteins for structural and functional analyses. Microbial Cell Factories, 15(1). doi:10.1186/s12934-016-0586-4 | es_ES |
dc.description.references | Szappanos, H., Szigeti, G. P., Pál, B., Rusznák, Z., Szűcs, G., Rajnavölgyi, É., … Csernoch, L. (2006). The antifungal protein AFP secreted by Aspergillus giganteus does not cause detrimental effects on certain mammalian cells. Peptides, 27(7), 1717-1725. doi:10.1016/j.peptides.2006.01.009 | es_ES |
dc.description.references | Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation. Plant Physiology, 145(4), 1211-1219. doi:10.1104/pp.107.108563 | es_ES |
dc.description.references | Tóth, L., Kele, Z., Borics, A., Nagy, L. G., Váradi, G., Virágh, M., … Galgóczy, L. (2016). NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express, 6(1). doi:10.1186/s13568-016-0250-8 | es_ES |
dc.description.references | Tóth, L., Váradi, G., Borics, A., Batta, G., Kele, Z., Vendrinszky, Á., … Galgóczy, L. (2018). Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2). Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.00393 | es_ES |
dc.description.references | Vila, L., Lacadena, V., Fontanet, P., del Pozo, A. M., & Segundo, B. S. (2001). A Protein from the Mold Aspergillus giganteus Is a Potent Inhibitor of Fungal Plant Pathogens. Molecular Plant-Microbe Interactions®, 14(11), 1327-1331. doi:10.1094/mpmi.2001.14.11.1327 | es_ES |
dc.description.references | Virágh, M., Vörös, D., Kele, Z., Kovács, L., Fizil, Á., Lakatos, G., … Galgóczy, L. (2014). Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expression and Purification, 94, 79-84. doi:10.1016/j.pep.2013.11.003 | es_ES |
dc.description.references | Zeitler, B., Bernhard, A., Meyer, H., Sattler, M., Koop, H.-U., & Lindermayr, C. (2012). Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Molecular Biology, 81(3), 259-272. doi:10.1007/s11103-012-9996-9 | es_ES |